Genetics Allele: Different versions of the same trait

Genetics  Allele: Different versions of the same trait

Genetics Allele: Different versions of the same trait represented by letters most living thing gets one set of chromosomes from biological mother and one set from biological father (this does not include cloning) 2 alleles for each trait Phenotype: what an organism looks like - what you see Genotype: the genes that make up the genetics Dominant trait: a trait that shows up no matter what it is paired with Recessive trait: a trait that is masked or hidden unless it is paired with another recessive trait

Genes are represented by letters 2 different types of the same gene: one is dominant and one is recessive An example of this is: T is a gene for tall and t is a gene for short The two versions of the same gene are called alleles Dominant genes will always prevent the recessive gene from working

2 dominant alleles for tallness: TT then he will be tall 1 dominant and I recessive allele for tallness: Tt then he will be tall 2 recessive alleles for short: tt then he will be short Homozygous vs. Heterozygous Homozygous: pair of genes controlling the characteristic has identical alleles, TT or tt Heterozygous: pair of genes controlling the characteristic are different

alleles, Tt Punnett Squares/Genetic Crosses: When working on genetic crosses the capital letter represents the dominant allele and the small letter represents the recessive allele Using the Punnett Squares STEPS: 1. determine the genotypes of the parent organisms 2. write down your "cross" (mating)

3. draw a p-square 4. "split" the letters of the genotype for each parent & put them "outside" the punnett-square 5. determine the possible genotypes of the offspring by filling in the punnett-square 6. summarize results (genotypes & phenotypes of offspring) Using the Punnett Squares Step #1: Determine the genotypes of the parent organisms.

Sometimes this is done for you, Cross two organism with the following genotype: Tt & tt", it's all right there in the question already. Sometimes you need to use key words from the questions to figure out the genotypes of the parents. Cross a short pea plant with one that is heterozygous for tallness. Genotypes: short pea plant (tt) x heterozygous tall pea plant (Tt) Using the Punnett Squares

Step 2: Write down your "cross" (mating). Write the genotypes of the parents in the form of letters (ex: Tt x tt) Step #3: Draw a Punnett-square. Using the Punnett Squares Step #4: "Split" the letters of the genotype for each parent & put them "outside" the punnett-square. Use these parental genotypes: Tt x tt. Take the genotype letters of one parent, split them and put them on

the left, outside the rows of the punnett-square. Now take the two letters of the second parent's genotype, split them up, and place them above each of the two columns of the punnett-square Using the Punnett Squares Step #5: Determine the possible genotype of the offspring by filling in the punnett-square.

To determine the outcome, fill-in the the boxes of the punnettsquare. Again we do this be taking a letter from the left & matching it with a letter from the top. Like so: Using the Punnett Squares Step 6: summarize results (genotypes & phenotypes of offspring). Phenotypes of Offspring: 2 heterozygous tall 2 short

Genotypes of Offspring: 2 Tt 2 tt Ratio and Percentage: Percent of tall offspring 2/4 or 50% Percent of short offspring 2/4 or 50% Practice A species of flamingo's has been discovered that have 2

different colored feathers, orange or blue. A is a dominant trait a is a recessive trait A represents red a represents blue AA and Aa are red aa is blue A homozygous red bird (AA) is crossed with a homozygous blue bird (aa). Practice A is a dominant trait a is a recessive trait

A represents red a represents blue AA and Aa are red aa is blue A heterozygous red bird is crossed with a heterozygous red bird. (remember step 2!) Codominance This is where two alleles combine and neither is masked they are equal in power. An example of this is human blood type. ABO are the alleles which make up the human blood types. A and B are equal in

dominance (codominance) both over O (recessive). Lets look at what happens when we cross a parent who has a blood type of A (AO) with a parent with blood type B (BO). Codominance Practice Roses are co-dominant for color. A red rose has RR A white rose has WW When crossed they produce pink offspring (RW)

If a red knockout rose (RR) is crossed with a white knockout rose (WW) what % of their offspring will be pink? If two pink roses are crossed how many of their offspring will be pink, white, red? Dihybrid Crosses This type of cross requires a 16 box Punnett square.

Recently Viewed Presentations

  • The Odyssey - Yola

    The Odyssey - Yola

    Tells Odysseus he can't kill Scylla because she is eternal evil itself- horror pain and chaos. Just run! The Island of Helios the Sun God. 7 flocks of lamb, with fifty lambs in each flock. Yum! If Odysseus controls himself...
  • Chapter One: The Origin of the Idea of Race

    Chapter One: The Origin of the Idea of Race

    Joseph Arthur Comte de Gobineau (July 14, 1816 - October 13, 1882) was a French aristocrat who developed the theory of the Aryan master race in his book An Essay on the Inequality of the Human Races (1853-1855).. Gobineau was...
  • Subordinating Conjunctions Using AAAWWUBBIS to link dependent and

    Subordinating Conjunctions Using AAAWWUBBIS to link dependent and

    Using AAAWWUBBIS to link dependent and independent clauses into complex sentences. Wait... what's an independent clause again? A group of words that contains a noun and a verb and expresses a complete thought. Can stand alone as a sentence.
  • Understanding Trauma and Why we Must Address It

    Understanding Trauma and Why we Must Address It

    Power/control are minimized. ... Felt they were being punished. Were confused by staff use of force. Did not feel protected from harm. Report feelings of bitterness and anger one year later. ... PowerPoint Presentation Last modified by: Laura Mandel
  • Rotational Trigonometry: Trig at a Point

    Rotational Trigonometry: Trig at a Point

    The Trigonometric Ratios. We all know "Soh-Cah-Toa."The three basic trigonometric functions are the sine, cosine and tangent. But, there are three more trig functions called the "reciprocal functions." Recall from before,
  • BLOODBORNE PATHOGENS - osha.gov

    BLOODBORNE PATHOGENS - osha.gov

    Bloodborne pathogens are infectious microorganisms in human blood that can cause disease in humans. These pathogens include, but are not limited to, hepatitis B (HBV), hepatitis C (HCV) and human immunodeficiency virus (HIV). Needlesticks and other sharps-related injuries may expose...
  • LGBT Workforce and Service Population Initiatives Human Resources

    LGBT Workforce and Service Population Initiatives Human Resources

    Meeting the Needs of the LGBT Community. In July, ODI joined other VA officials from VHA and VBA in a meeting with the National Coalition of LGBT Health representing over 70 LGBT organizations to engage in a dialogue about emerging...
  • A UTIA P&T Committee Perspective - ag.tennessee.edu

    A UTIA P&T Committee Perspective - ag.tennessee.edu

    The general scope of performance in a particular rank is consistent across the university. However, the requirements for you as an individual are defined by the department in which your appointment resides and is a function of your particular discipline.