Outline Search for octupole-deformed nuclei for enhancement of

Outline Search for octupole-deformed nuclei for enhancement of

Outline Search for octupole-deformed nuclei for enhancement of atomic EDM 1 2 Umesh Silwal, Prajwal Mohanmurthy, 1Durga P. Siwakoti, 1Jeff A. Winger 1Mississippi State University 2LNS, Massachusetts Institute of Technology June 06, 2019 Cohen University Center, CMU MENU-2019 1 PA June 02-07 Pittsburgh, Outline Introduction: why is EDM important? Attempts to measure the EDM General technique of measuring EDM Need of Octupole deformed nuclei EDM enhancement Survey results, and Future Research Cohen University Center, CMU MENU-2019 October 25-28, 2017 2 PA June 02-07 Pittsburgh, Pittsburgh, PA Introduction What is EDM? = - l + Any two point charges with equal magnitude but opposite signs separated by small distance is called electric dipole. Source of EDM? Source of EDM is mainly, in CKM matrix, and QCD-s . But CPT-Violation, SUSY all can cause and may also enhance the SM-EDM. 225

Ra Fig: source google 3 Introduction Why EDM is Interesting? P-violation: - puzzle Parity is conserved in electro-magnetic and strong interactions but must not conserved in weak interaction. Wu et al., in 1957 observed that -decay of 60Co preferentially emitted against the direction of the spin of it which tells that weak interactions violates parity maximally. CP-violation: Natural kaon decay CP is marginally violated as neutral kaons oscillated to their anti-particles. 4 Introduction Why EDM is Interesting? CP-violation: Natural kaon decay cont.. CP violation shows that weak interactions dont treat the matter the same as anti-matter and this would leave the abundance of matter over antimatter. Source of CP violation comes from the SM-CKM matrix in the form of CP . Strong CP problem dn ~ s .(610-17) e.cm dn < 3 10-26 e.cm s < 5 10-10 Ref. J M Pendlebury et al. Phys. Rev. D 92.9 (Nov. 2015) Maxim Pospelov and Adam Ritz. Ann. Phys. 318.1 (July 2005), The Smallness of the value of s is unknown, also known as CP problem. CPT (and Lorentz) Symmetry Quantum field theory is invariant under CPT transformation recover the original vector after successive C, P, T transforms. Any deviation from CPT invariance is beyond the SM and will involve new physics. Hence precision test of CPT invariance is a powerful way to gain insights into aspects of possible new physics. 5 Introduction Why EDM is Interesting? Baryon Asymmetry of the Universe (BAU) BAU is quantified as the a ratio between the density of surviving matter (n B) to photons (n). Precisely measured value of B in cosmic microwave background observation reported by planks telescope is [Ref. Canetti et al.]

BAU computed using the known source of CP violation in CKM-matrix [Ref. Riotto et al.]: BAU calculated using known source of CP violation is too small and there should be additional new source of CP-violations and corresponding new physics Beyond the Standard Model (BSM). Laurent Canetti, Marco Drewes, and Mikhail Shaposhnikov. Matter and antimatter in the universe. en. In: New J. Phys.14.9 (Sept. 2012 Antonio Riotto and Mark Trodden. Recent progress in Baryogenesis. In: Annu. Rev. Nucl. Part. Sci. 49.1 (Dec. 1999) 6 Introduction Why EDM is Interesting? EDM and CP-Violation A. Yoshimi RIEKN (https://slideplayer.com/slide/8243393/) + + T + _ _ EDM _ P Spin EDM Spin EDM Spin Zheng-Tian Lu et al. 7 Attempts to Measure the EDM Attempts to measure the EDM EDM may generate from one or many CP violating mechanism. Non-zero EDM is elementary particles, subatomic composite particles , nuclei and atoms in their ground state indicates CPV. Only non-degenerate states possessing non-zero EDM violates CP Non-zero EDM of molecule does not necessarily indicate the CPV. Attempts over the last five decades at measuring a CPV EDM in many systems have resulted in stringent upper limit. Ref. Jungmann et. al., 2017 (

https://journals.jps.jp/doi/10.7566/JPSCP.18.011017) 8 Attempts to Measure the EDM Attempts over the last five decades at measuring a CPV EDM in many systems have resulted in stringent upper limit. Ref. Jungmann et. al., 2017. 9 General Technique Ramsey Method: 10 General Technique Ramsey Method: Begins with polarized ensemble, magnetization is aligned in z axis same as magnetic field RF-oscillating field is applied in xy direction Figure illustrating the steps involved in the Ramsey method. An initial state with magnetization: Courtesy: P. Schmidt-Wellenburg (2016). 11 Measured and Theoretical EDM Value 10 -26 10-23 10-29 10-38 10-32 10-32 10-44 Fig: panel showing the measured and theoretical value of EDM for leptons and baryons. The measured upper limit of EDM at 90% C.L. has been shown in red. The gray portion represents the contributions of QCD-s, where as the purple color shows the contribution from SM-CKM matrix. [Ref. P. Mohanmurthy] 12 Measured and Theoretical EDM Value 10-22

10-26 10-32 The measured upper limit of atomic EDM at 90% C.L. has been shown in red. The gray portion represents the contributions of QCD-s, where as the purple color shows the contribution from SM-CKM matrix. [Ref. P. Mohanmurthy] 13 Need of Octupole-Deformed Nuclei Octupole deformed nuclei and EDM EDM searches in different systems are complementary since they are sensitive to different linear combination of CP-violation sources. Paramagnetic molecules and atoms: Tl, YbF, ThO, HfF+ have single unpaired electrons and are sensitive to an intrinsic electron EDM. o The contribution of electron EDM in paramagnetic system is amplified by the relativistic atomic structure of the heavy alkali-like atoms and are sensitive to nuclear spin independent CP-violating electron-nucleon interactions. The diamagnetic atoms and molecules: 199Hg, 129Xe, 225Ra, TIF have a appearance of partially screened nucleus and are sensitive to isoscalar and isovector CP-violating interaction inside the nucleus. Diamagnetic atoms have relatively very small contributions from individual electron, proton or neutron EDM, compared to contributions from nuclear Schiff moment. o According to Schiff theorem, nuclear EDM in diamagnetic systems is almost completely screened by the surrounding electron cloud. This screening is not perfect for the heavy nuclei due to relativistic atomic structure, and contribute residual effect to the atomic EDM also called Schiff moment. 14 [Ref. Jaideep Singh 2019, https://arxiv.org/abs/1903.03206] Need of Octupole-Deformed Nuclei Octupole deformed nuclei and EDM Nuclei 221,223 Rn EDM enhancement w.r.t 99Hg 102 Ra 103 Pa 105 225 229 Ref. Jaideep Singh 2019 Hg currently sets the most stringent limits on CP-violating interactions

originating from nuclear medium. Diamagnetic atoms such as 225Ra, 221,223Rn, 229Pa have a pear-shaped (octupole-deformed) nuclei. Octupole deformed characterized by 3 has nearly degenerate parity doublets. Due to the parity-violating nucleon-nucleon interaction, the two states that make up the parity doublet mix and result in an enhanced Schiff moment. 199 15 Need of Octupole-Deformed Nuclei Octupole deformation zone in Z, N isotope plot A = 270 N = 84 -88 Z = 54 -70 N = 130-136 Z = 84 -92 Octupole deformation in the nuclear chart based on the 3D Skyrme HartreeFock plus BCS model @S. Ebata et al. (https://arxiv.org/pdf/1707.07416.pdf) 16 Need of Octupole-Deformed Nuclei Octupole deformed nuclei and EDM Contribution of atomic EDM due to Schiff moment: 2 - quadrupole deformation parameter 3 - octupole deformation parameter E - energy different between the parity doublets Larmor frequency of spin-1/2 particles: The difference in two frequency is: For the uniform magnetic field, B =0, and frequency difference is directly proportional to EDM. Hence, the uncertainty in EDM is solely given by the uncertainty in frequency measurement. Ref. Jaidep Singh et al., https://link.springer.com/article/10.1007/s10751-019-1573-z Spevak et. Al., Phys. Rev. C 56, 1357 Auerbach et. Al., Phys. Rev. Lett. 76, 4316 17 Need of Octupole-Deformed Nuclei Octupole deformed nuclei and EDM Contribution of atomic EDM due to Schiff moment: 2 - quadrupole deformation parameter 3 - quadrupole deformation parameter E - energy different between the parity doublets Which is ideally the inverse of spin precession time ():): Nm = number of frequency different measurements

Na = total number of particles probed T = total integration time = experimental efficiency [Ref. Jaideep Singh 2019, https://arxiv.org/abs/1903.03206] 18 Need of Octupole-Deformed Nuclei Statistical Sensitivity to EDM measurement Sector Exp. Limit (e-cm) Electron 1.1 x 10-29 ThO in a beam 10-44 Neutron 3 x 10-26 UCN in a bottle 10-32 Hg atoms in a cell 10-35 199 Hg 6.2 x 10-30 Method Standard Model Ref. M. Ramsey-Musolf (2009) No experimental evidence for a permanent EDM in any System 19 Need of Octupole-Deformed Nuclei Statistical Sensitivity to EDM measurement Nuclei shorting were based on: Nuclei with better octupole deformation than 225Ra. Nuclei with relative quiet branches of decay (not too noisy): i.e., long halftimes. Relatively well known magnetometry and atomic spectroscopy like Fr, Ra, Hg, Cs, TI, Y and so on.

EDM enhance were calculated based on: a Theoretical Enhancement(2 32 Z3 A23)/EE b Statistical Sensitivity (Beam rates T12) c Beam Sensitivity (T12) Comparison of Theoritical Sensitivity w.r.t Statistical Sensitivity Theoretical Enhancement Statistical Sensitivity d 20 Survey Results 21 Table-I: Potential Octupole Deformed Nuclei for EDM Measurement S. N. Nuclei 1 1 221Rn86 221Rn86 2 2 3 3 4 4 5 5 6 6 7 7 8 8 223Rn86 223Rn86 225Rn86 225Rn86 223Ra88 223Ra88 225Ra88 225Ra88 225Ac89 225Ac89

226Ac89 226Ac89 221Fr87 221Fr87 9 223Fr87 9 10 223Fr87 225Fr87 10 11 225Fr87 227Fr87 11 12 227Fr87 229Th90 12 229Th90 T1/2 25(2)min 25(2)min [Jain2007] [Jain2007] 24.3(4) min 24.3(4) min [Browne2001] [Browne2001] 4.66(4) min 4.66(4) min [Jain2008] [Jain2008] 11.43(5)days [Browne2001] 11.43(5)days [Browne2001] 14.9(2) days [Jain2009] 14.9(2) days [Jain2009] 9.9203(3) days [Jain2009] 9.9203(3) days [Jain2009] 29.37(12)

hours [Akovali1996] 29.37(12) hours [Akovali1996] 4.9(2) min [Jain2007] 4.9(2) min [Jain2007] 22.00(7) min [Browne2001] 22.00(7) min 3.95 (14)min [Browne2001] [Jain2008] 3.95 (14)min 2.47(3) min [Jain2008] [ICTP2016] 2.47(3) min 7880(120) [ICTP2016]yr [Brwone2008] 7880(120) yr [Brwone2008] 1.50(5) days 13 229Pa91 [Browne2008] 1.50(5) days 13 229Pa91 [Browne2008] Results and Conclusions E Th. FRIB 3 0.142 0.142 [ATNDT] [ATNDT] 0.117 0.117 [ATNDT] [ATNDT] 0.077 0.077 [ATNDT] [ATNDT] 0.142 [ATNDT] 0.142 [ATNDT] 0.124 [ATNDT] 0.124

[ATNDT] 0.127 [ATNDT] 0.127 [ATNDT] 0.12 [ATNDT] 0.12 [ATNDT] 0.1 [Apevak199 0.1 6] [Apevak199 6] 0.135 [ATNDT] 0.135 0.108 [ATNDT] [ATNDT] 0.108 0.07 [ATNDT] [ATNDT] 0.07 0.24 [ATNDT] [Minkov201 0.24 7] [Minkov201 7] 0.082 [Spevak19 96] 0.082 [Spevak19 96] 2 enh. Yield (106) 0.119 0.119 [ATNDT] [ATNDT] 0.155 0.155 [ATNDT] [ATNDT] 0.163 0.163 [ATNDT] [ATNDT]

0.156 [ATNDT] 0.156 [ATNDT] 0.164 [ATNDT] 0.164 [ATNDT] 0.164 [ATNDT] 0.164 [ATNDT] 0.164 [ATNDT] 0.164 [ATNDT] 0.106 [Spevak199 0.106 6] [Spevak199 6] 0.146 [ATNDT] 0.146 0.163 [ATNDT] [ATNDT] 0.163 0.181 [ATNDT] [ATNDT] 0.181 0.115 [ATNDT] [Minkov201 0.115 7] [Minkov201 7] NoState NoState 50.13(1) 1.36 [Brwone2001] 50.13(1) 1.36 [Brwone2001] 55.16(6) 1.00 [Jain2009] 55.16(6) 1.00 [Jain2009] 40.1 1.49 [Spevak1996] 40.1 1.49

[Spevak1996] NoState NoState 234.51(5) 0.09 [Jain2007] 234.51(5) 0.09 [Jain2007] 3/2160.51(5) 0.35 [Browne2001] [Spevak1996] 3/2160.51(5) 0.35 3/2NoState [Browne2001] [Spevak1996] [Browne2001] 3/2NoState 1/2+ [ICTP2016] 62.97(7) 0.30 [Browne2001] [ICTP2016] 1/2+ [ICTP2016] 62.97(7) 0.30 5/2+ 133.3 1.07 [ICTP2016] [Browne2008] [Flambaum201 5/2+ 133.3 1.07 9] [Browne2008] [Flambaum201 521.13 9] 0.19 [ATNDT] 0.19 [ATNDT] 5/2+ 0.06(5) 521.13 [Brwone2008] [Ahmad2015] 5/2+ 0.06(5) [Brwone2008] [Ahmad2015] Stat. Sens. Bea m Sens.

EDM enh. 7/2+ [Jain2007] 7/2+ [Jain2007] NoState NoState - 2.29 2.29 0.02 0.02 0.60 0.60 - 7/2 7/2 [Brwone2001] [Brwone2001] 7/2- [Jain2008] 7/2- [Jain2008] 3/2+ [Browne2001] 3/2+ [Browne2001] 1/2+ [Jain2009] 1/2+ [Jain2009] 3/2[Jain2009] 3/2- [Jain2009] 1 [Akovali1996] 1 [Akovali1996] 5/2- [Jain2007] 5/2- [Jain2007] NoState NoState - 0.9 0.9 0.01 0.01 0.37 0.37 -

0.27 0.27 6.08 6.08 6.41 6.41 5.1 5.1 5.78 5.78 6.13 6.13 0.00 0.00 0.85 0.85 1.00 1.00 0.73 0.73 0.27 0.27 0.01 0.01 0.21 0.21 0.97 0.97 1.00 1.00 0.89 0.89 0.95 0.95 0.98 0.98 1.33 1.33 1.00 1.00 1.33 1.33 0.09 0.09 4.26 0.03 0.82 0.28 4.26 2.08 0.03

0.01 0.82 0.57 0.28 - 2.08 7.02 0.01 0.01 0.57 1.05 0.31 7.02 6.19 0.01 431.75 1.05 0.98 0.31 1.05 6.19 431.75 0.98 1.05 0.57 1.80 936.49 0.57 1.80 936.49 20.7 20.7 22 Table-I: Potential Deformed Nuclei for EDM Measurement (cont..) S . N

. Nucl ei T1/2 2.10(5)min [Jain2007] Results and Conclusions E Th. FRIB 3 2 enh . Yiel d (1 06) 0.147 5/250.7(1) 1.49 8.18 223Ac8 [ATNDT] [Browne2001 [Browne200 ] 1] 14 9 0.105 21.772(3) 0.172 3/227.369(11) 1.56 6.4 [ATNDT] year [ATNDT] [Brwone2001 [ICPT2014] 227Ac8 15 9 [ICTP2014]] ] Not 104(1) s 0.207 5/2+ 95.50(9) 6.34 221Ra8 [Jain2008] measured [ATNDT] [Brwone2013 [Browne201 Numbers are normalized

to 225 ] 3]Ra at FRIB 16 8 0.0.151 [ATNDT] Stat . Sen s. Bea m Sen s. ED M enh . 0.01 0.9 1.49 23.08 1.0 1.56 0.01 0.91 - 23 Table-I: Octupole Deformed Nuclei for EDM Measurement S. N. Nuclei 1 1 2 2 3 4 3 4 5 221Rn86

221Rn86 223Rn86 223Rn86 225Rn86 223Ra88 225Rn86 223Ra88 225Ra88 6 5 225Ac89 225Ra88 7 6 226Ac89 225Ac89 8 7 221Fr87 226Ac89 9 8 223Fr87 221Fr87 10 225Fr87 9 11 223Fr87 227Fr87 12 10 229Th90 225Fr87 11 227Fr87 12 13 229Th90 229Pa91 T1/2

25(2)min 25(2)min [Jain2007] [Jain2007] 24.3(4) min [Browne2001] 24.3(4) min [Browne2001] 4.66(4) min [Jain2008] 4.66(4) min 11.43(5)days [Jain2008] [Browne2001] 11.43(5)days 14.9(2) days [Browne2001] [Jain2009] 9.9203(3) days 14.9(2) days [Jain2009] 29.37(12) hours 9.9203(3) days [Akovali1996] [Jain2009] 4.9(2) min 29.37(12) hours [Jain2007] [Akovali1996] 22.00(7) min 4.9(2) min [Browne2001] [Jain2007] 3.95 (14)min [Jain2008] 22.00(7) min 2.47(3) min [Browne2001] [ICTP2016] 7880(120) yr 3.95 (14)min [Brwone2008] [Jain2008] 2.47(3) min [ICTP2016] 1.50(5) days 7880(120) yr [Browne2008] [Brwone2008] 1.50(5) days

13 E Th. FRIB Results and Conclusions enh. Yield 229Pa91 [Browne2008] 3 [ATNDT] 0.142 0.124 [ATNDT] [ATNDT] 0.127 0.124 [ATNDT] 0.12 0.127 [ATNDT] [ATNDT] 0.1 0.12 [Apevak199 [ATNDT] 6] 0.135 0.1 [ATNDT] [Apevak199 0.108 6] [ATNDT] 0.135 0.07 [ATNDT] 0.24 0.108 [Minkov201 [ATNDT] 7] 0.07 0.082 [ATNDT] [Spevak19 0.24 96] [Minkov201 7] 0.119 7/2+ [Jain2007] NoState 0.119

7/2+ [Jain2007] NoState [ATNDT] [ATNDT] 0.155 7/2 NoState [ATNDT] [Brwone2001] 0.155 7/2 NoState [ATNDT] [Brwone2001] 0.163 7/2[Jain2008] NoState [ATNDT] 0.163 7/2- [Jain2008] NoState 0.156 3/2+ 50.13(1) [ATNDT] [ATNDT] [Browne2001] [Brwone2001] 0.156 3/2+ 50.13(1) 0.164 1/2+ 55.16(6) [ATNDT] [Browne2001] [Brwone2001] [ATNDT] [Jain2009] [Jain2009] 3/2- 1/2+ [Jain2009] 40.1 0.164 55.16(6) [Spevak1996] [ATNDT] [Jain2009] [Jain2009] 0.164 1 [Akovali1996] NoState 0.164 3/2- [Jain2009] 40.1 [ATNDT] [ATNDT] [Spevak1996] 0.106 5/2- [Jain2007] 234.51(5) 0.164

1 [Akovali1996] [Jain2007] NoState [Spevak199 [ATNDT] 6] 0.146 3/2160.51(5) 0.106 5/2- [Jain2007] 234.51(5) [ATNDT] [Browne2001] [Spevak1996] [Spevak199 [Jain2007] 0.163 3/2NoState 6] [ATNDT] [Browne2001] 0.146 3/2160.51(5) 0.181 1/2+ [ICTP2016] 62.97(7) [ATNDT] [Browne2001] [Spevak1996] [ICTP2016] 0.115 5/2+ 133.3 0.163 3/2NoState [Minkov201 [Browne2008] [Flambaum20 [ATNDT] [Browne2001] 7] 19] 0.181 1/2+ [ICTP2016] 62.97(7) 0.06(5) [ATNDT] [ICTP2016] 0.19 5/2+ [Ahmad2015 0.115 5/2+ 133.3 [ATNDT] [Brwone2008] ] [Minkov201 [Browne2008] [Flambaum20 7] 19] 0.082 [Spevak19

96] 0.06(5) 0.19 5/2+ [Ahmad2015 [ATNDT] [Brwone2008] ] 0.142 0.142 [ATNDT] [ATNDT] 0.117 [ATNDT] 0.117 [ATNDT] 0.077 [ATNDT] 0.077 0.142 [ATNDT] (106) Stat. Sens . Beam Sens. 1.36 2.29 2.29 0.9 0.9 0.27 0.27 6.08 0.02 0.02 0.01 0.01 0.00 0.00 0.85 0.60 0.60 0.37 0.37 0.21 0.21 0.97 1.33

1.36 1.00 6.08 6.41 0.85 1.00 0.97 1.00 1.33 1.00 1.49 1.00 5.1 6.41 0.73 1.00 0.89 1.00 1.33 1.00 1.49 5.78 5.1 0.27 0.73 0.95 0.89 1.33 0.09 - 6.13 5.78 0.01 0.27 0.98 0.95 0.09 - 0.35 0.09

4.26 6.13 0.03 0.01 0.82 0.98 0.28 0.09 - 2.08 0.01 0.57 - 0.35 0.30 4.26 7.02 0.03 0.01 0.82 1.05 0.28 0.31 1.07 - 6.19 2.08 431.75 0.01 0.98 0.57 1.05 - 0.30 521.13 7.02 0.01 0.57

1.05 1.80 0.31 936.49 1.07 6.19 20.7 431.75 0.98 1.05 0.57 1.80 936.49 2 521.13 20.7 EDM enh. 24 Results and Conclusions Table-I: Octupole Deformed Nuclei for EDM Measurement (cont..) S . N . Nucl ei FRIB Yiel d (1 06) Sta t. Sen s. Bea m Sen

s. DM enh. 0.147 5/250.7(1) 1.49 8.18 [ATNDT] [Browne2001 [Browne200 ] 1] 0.105 21.772(3) 0.172 3/227.369(11) 1.56 6.4 [ATNDT] year [ATNDT] [Brwone2001 [ICPT2014] 227Ac8 15 9 [ICTP2014]] ] Not 104(1) s 0.207 5/2+ 95.50(9) 6.34 225 Numbers are normalized to Ra at FRIB measured 221Ra [Jain2008] [ATNDT] [Brwone2013 [Browne201 ] 3] 16 88 0.01 0.9 1.49 23.08 1.0 1.56

0.01 0.91 - 223Ac8 14 9 T1/2 2.10(5)min [Jain2007] 3 0.0.151 [ATNDT] 2 E Th. enh 25 Table-II: Additional Nuclei with Suspected Octupole Deformation (No calculation performed yet) S . N Nucl ei T1/2 3 pre d. 187Au 8.3(2) min 79 [Basunia200 9] 189Au 28.7(4) min 79 [Johnson201 7] 231Ac 7.5(7) min 89 [Brwone201 3] 233Ac 2.4(2) min 89 [Singh2005]

? 5 235Th 7.2(7) min 90 [Browne201 4] 6 233Th 21.83(4) min 90 [Singh2005] ? 1 2 3 4 ? ? ? ? 2 pred. E Th. Se ns FRIB Yield (106 ) Stat . Sen s. Bea m Sen s. EDM enh anc eme nt 0.156 1/2+ 274.91(16) 33.8 0.05 2.30 [ATNDT] [Basunia20 [Basaunia 09]

2009] 0.148 1/2+ 814.30(25) 58.6 0.11 3.02 [ATNDT] [Johnson20 [Johnson2 17] 017] 0.207 1/2+ 372.28(8) 52.7 0.05 2.87 [ATNDT] [Browne201 [Browne20 3] 13] 0.215 1/2+ 1/2- state 26.7 0.02 2.04 [ATNDT] [Singh2005 not ] measured 0.215 1/2+ 1/2- state 6.72 0.02 1.02 [ATNDT]] [Brwone201 not 4] measured 0.215 1/2+ 539.61(2) 6.43 0.03 1.00 [ATNDT] [Singh2005 [Singh200 ] 5] 0.215 1/2+ 1/2- state 6.91 0.02 1.04 [ATNDT] [Basunia20 not 06] measured 0.223 1/2+

Not Data Not [ATNDT] [Brwone201 measured available 4] come in clusters. These species here are inside the 7 237Pa 8.7(2) min ? 91 [Basunia200 6] 8 239Pu 24110(30) ? 94 year [Brwone200 Octupole deformations 14] region, but haven't calculated as most previous 9 241C 32.8(2) days ?been0.223 1/2+ 1/2- state - calculations Data Not simplified system like even-even systems (Ref. et. al.,) m96 [Nesaraja20 [ATNDT] [Nesaraja20 not Sylvester available 05] 05] measured - used - some - 26 Table-III: Additional Octupole Deformed Nuclei (might be useful for different EDM measurement techniques) S . N Nucl ei

1 220Ra88 224Ra88 2 2 226Ra88 226Ra88 3 3 4 4 224Ac89 224Ac89 T1/2 18(2)ms 3.6319(23)days [Singh2015] 1600(7) Year Year 1600(7) [Akovali1996] [Akovali1996] 2.78(16) 2.78(16) hour hour 3 pre d. 0.144 [ATNDT] 0.131 [ATNDT] 0.108 0.108 [ATNDT] [ATNDT] 0.144 0.144 [ATNDT] [ATNDT] 2 pred. 0.103 [ATNDT] 0.164 [ATNDT] 0.172 0.172 [ATNDT] [ATNDT] 0.165 0.165 [ATNDT] [ATNDT] E

Th. Sen s FRIB Yield (106) 0+ - 0+ [Singh2015] 0+ 0+ [Akovali1996] [Akovali1996] 00- - 0.8 6.8 -- 5.61 5.61 -- 4.45 4.45 Sta t. Sen s. Bea m Sen s. EDM enhanc ement 27 Results and Conclusions 28 Results and Conclusion We have performed the global survey of potential octupole deformed candidate atomic nuclei for the EDM enhancement Figure out 7 viable nuclei for the future measurement at FRIB facility which are equally or more sensitive than 225Ra.

Nuclei EDM Sensitivity compared to 225Ra 223Ra88 225Ra88 223Ac89 1.33 1.00 1.34 225Ac89 1.33 227Ac89 229Th90 1.56 1.05 936.49 229Pa91 Numbers are normalized to Ra at FRIB 225 29 Future Research We have requested the Dr. Anatolis group @Msstate for the theoretical calculation of 3 value of some of our suspected octupole-deformed nuclei. Will be writing the proposal at FRIB for measuring the EDM value of some of the most EDM sensitive nuclei. 30 List of selected references 1 3 2 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

19 20 21 22 23 24 25 26 27 28 [Singh2011] [ATNDT] [FRIB] [Browne2001] [Jain2009] [Akovali1996] [ICTP2016] [Brwone2008] [Basunia2009] [Johnson2017] [Browne2013] [Singh2005] [Brwone2014] [Basunia2006] [Nesaraja2005] [Singh2015] [Brwone2008] [Minkov2017] [Akovali1996] [Browne2001] [Jain2008] [Jain2007] [SIngh2006] [Timar2014] [Ahmad2015] [Spevak1996] [Lender1988] [Flambaum2019] S. Singh et al. Nucl Data Sheet 111, 2851 (2011) P. Moller et al., Atomic Data & Nuclear Data Table, 59, 485-38 (1995) https://groups.nscl.msu.edu/frib/rates/fribrates.html E. Browne, Nucl Data Sheet 93, 843 (2001) A. K. Jain et al. Nucl Data Sheet 110, 1409 (2009) Y. A. Akovali Nucl Data Sheet 77, 443 (1996) Ictp-2014 Worskhoop Group, Nucl Data Sheet 132, 257 (2016) E. Brwone et al., Nucl Data Sheet 109, 2657 (2008) M. S. Basunia Nucl Data Sheet 110, 999 (2009) T. D. Johnson et al., Nucl Dtat Sheet 142, 1(2017) E. Browne et al., Nucl Data Sheet 114, 751, 2013 B. Singh et al., Nucl Data Sheet105, 109 (2005) E. Brwone et al., Nucl Data Sheet 122, 205 (2014) M. S. Basunia Nucl Data Sheet 107, 2323 (2006) C. D. Nesaraja , Nucl Data Sheet 130, 183(2005) S. Singh et al. Nucl Data Sheet 130, 127 (2015) E. Browne et al., NDS 109, 2657 (2008) N. Minkov et al., Phys. Rev. Lett 118 212501 (2017) Y. A. Akovali NDS 77, 433 (1996) E. Browne et al., NDS 93, 846 (2001)

A. K. Jain et al., NDS 110, 1409 (2009) A. K. Jain et al., NDS 108, 883 (2007) B. Singh, NDS 108, 79 (2007) J. Timar et al., NDS 121, 143, (2014) I Ahmad et al., Phys. Rev. C 92, 024313 (2015) V. Spevak et al., Phys. Rev. C 56,3 (1997) G. A. Lender et al., Phys. Rev. C 37 (1988) V. V. Flambaum, Phys. Rev. C 99, 035501 (2019) 31 Acknowledgement My major advisor Dr. Jeff A. Winger. Co-authors of this work: Mr. P. Mohanmurthy and Mr. D. P. Siwakoti Office of Science, Department of Energy for supporting through travel fund. Thank You! Cohen University Center, CMU MENU-2019 October 25-28, 2017 June 02-07 Pittsburgh, PA Pittsburgh, PA General Technique Ramsey Method: Fig. comparison between Rabi and Ramsey method. Ramsey oscillation is much narrow Statistical Sensitivity in Ramsey method is: 34 Measured and Theoretical EDM Value The measured upper limit of molecular EDM at 90% C.L. has been shown in red. The gray portion represents the contributions of QCD-s, where as the purple color shows the contribution from SM-CKM matrix. Ref. P. Mohanmurthy. 35 Ongoing Effort for EDM Measurement 36 225Ra enhanced EDM of Results more reliably calculated andand Conclusions Closely spaced parity doublet Haxton & Henley, PRL (1983) Large Schiff moment due to octupole deformation Auerbach, Flambaum & Spevak, PRL (1996)

Relativistic atomic structure (225Ra / 199Hg ~ 3) Dzuba, Flambaum, Ginges, Kozlov, PRA (2002) Parity doublet Schiffm_oment = i 0 |a |b - = (|a - a 55 keV |a - b)/2 + = (|a - a + |a - b)/2 0 Sz i i HPT 0 c +c . . E0 - Ei Enhancement Factor: EDM (225Ra) / EDM (199Hg) Isoscalar Isovector Skyrme SIII 300 4000 Skyrme SkM* 300 2000 Skyrme SLy4 700 8000 Schiff moment of 225Ra, Dobaczewski, Engel, PRL (2005) Schiff moment of 199Hg, Dobaczewski, Engel et al., PRC (2010) [Nuclear structure] calculations in Ra are almost certainly more reliable than those in Hg. Engel, Ramsey-Musolf, van Kolck, Prog. Part. Nucl. Phys. (2013) Constraining parameters in a global EDM analysis. Chupp, Ramsey-Musolf, arXiv1407.1064 (2014) 37 Results and Conclusions Nuclei shorting based on: Find nuclei with better octupole deformation than 225Ra

Species is at least long lived as 225Ra With relative quiet branches of decay (not too noisy) Relatively well known magnetometry and atomic spectroscopy like Fr, Ra, HG, Cs, TI, Y and so on. No experimental evidence for a permanent EDM in any System <1.6 10 27 . <2.1 10 < 6.3 10 28 20 . . 1. B.C. Regan et al., Phys. Rev. Lett. 88, 071805 (2002) (90% C.L.) 2. M.V Romalis et al., Phys. Rev. Lett. 86, 2505 (2001) (90% C.L.) 3. P.G. Harris et al., Phys. Rev. Lett. 82, 904 (1999) (90% C.L.) 38 Results and Conclusions J. Engel @https://www.physics.umass.edu/acfi/sites/acfi/files/slides/dipole-amherst.pdf 39

Recently Viewed Presentations

  • Chapter 12 Inference About One Population 1 12.1

    Chapter 12 Inference About One Population 1 12.1

    Based on the data presented in Xm12-05 where 1=Democrat, and 2=Republican), can the network conclude that the republican candidate will win the state college vote? Testing the Proportion Solution The problem objective is to describe the population of votes in...
  • Les Adjectifs et les Adverbes - Scarsdale Public Schools

    Les Adjectifs et les Adverbes - Scarsdale Public Schools

    Les Adjectifs et les Adverbes Donnez les formes féminines des adjectifs suivants noir noire riche riche fatigué fatiguée dernier dernière vif vive trompeur trompeuse travailleur travailleuse heureux heureuse joyeux joyeuse menteur menteuse :) Certains adjectifs en -teur deviennent -trice protecteur...
  • The History of English

    The History of English

    The History of English How English has Changed Over the Past 1500 Years Outline The Pre-English Period The Old English Period The Middle English Period The Early Modern English Period The Modern English Period The Pre-English Period In the Beginning…
  • Microsoft brand template

    Microsoft brand template

    Click to edit Master title style. Edit Master text styles. Second level. Third level. Fourth level. Fifth level. Click to edit Master title style. Edit Master text styles
  • Welcome! [msedbiology.weebly.com]

    Welcome! [msedbiology.weebly.com]

    It is estimated that there are…. 10 million - 1 billion species of bacteria on Earth. 10-30 million species of animals. 300,000 species of plant. 75,000 species of fungi. 65,000 - 200,000 species of protist
  • University of Southern Denmark - ISUAbroad

    University of Southern Denmark - ISUAbroad

    Uxbridge also houses the Battle of Britain Bunker, from where the air defense of the south-east of England was coordinated during the Battle of Britain. Situated in RAF Uxbridge, the No. 11 Group Operations Room within the bunker took on...
  • Module 1: Common Core Instruction for ELA &amp; Literacy

    Module 1: Common Core Instruction for ELA & Literacy

    Unlike Tier 1 words, they usually require a more deliberate effort to acquire. Tier 3 words are specific to a domain or field of study and are key to understanding a new concept within a text or content area. ......
  • Book IV The Red-Haired King and his  Lady

    Book IV The Red-Haired King and his Lady

    There once was a king and queen named Menelaus and Helen. One day, two men named Pisistratus and Telemachus arrived at Menelaus's castle. Menelaus invites them in, thinking they are beggars, offering them food and a place to sleep. ......