Lecture 1 Course Overview

Lecture 1 Course Overview

Dimensional Ranges 1 m < L < 300 m lateral dimensions Surface micromachined structures classic MEMS 300 m < L < 3 mm Bulk silicon/wafer bonded structures still call them MEMS and cover them in this course 10 nm < L < 1 m Nano electromechanical systems NEMS (overlap with MEMS some coverage in this course) EE C245 ME C218 Fall 2003 Lecture 1 9 What arent MEMS

It runs! The Denso micro-car: circa 1991 http://www.globaldenso.com/ABOUT/history/ep_91.html Fabrication process: micro electro-discharge machining EE C245 ME C218 Fall 2003 Lecture 1 Cost? 10 Experimental

Catheter-type Micromachine for Repair in Narrow Complex Areas Repairing manipulator Vision device Welding device Multi freedom bending tube Monitoring device Posture Detecting Device Japanese Micromachine Project 1991-2000 EE C245 ME C218 Fall 2003 Lecture 1

11 Batch Fabrication Technology Planar integrated circuit technology 1958 1. Thin-film deposition and etching 2. Modification of the top few m of the substrate 3. Lateral dimensions defined by photolithography, a process derived from offset printing Result: CMOS integrated circuits became the ultimate enabling technology by circa 1980 Moores Law Density (and performance, broadly defined) of digital integrated circuits increases by a factor of two every year. EE C245 ME C218 Fall 2003 Lecture 1 12 A Microfabricated Inertial Sensor

MEMSIC (Andover, Mass.) Two-axis thermal-bubble accelerometer Technology: standard CMOS electronics with post processing to form thermally isolated sensor structures Note: Im a technical advisor to MEMSIC a spinoff from Analog Devices. EE C245 ME C218 Fall 2003 Lecture 1 14 Other Batch Fabrication Processes Historically, there arent that many examples outside

of chemical processes However, thats changing: Soft (rubber-stamp) lithography Parallel assembly processes enable low-cost fabrication of MEMS from micro/ nano components made using other batch processes heterogeneous integration EE C245 ME C218 Fall 2003 Lecture 1 15 Microassembly Processes Parallel Pick-and-Place Parallel assembly processes promise inexpensive, high-volume heterogeneous integration of MEMS, CMOS, and photonics www.memspi.com, Chris Keller, Ph.D. MSE 1998

Wafer-Level Batch Assembly Fluidic Self-assembly Many challenges: > interconnect > glue www.microassembly.com Michael Cohn, Ph.D. EECS, 1997 EE C245 ME C218 Fall 2003 Lecture 1 Uthara Srinivasan, Ph.D., Chem.Eng. 2001 16

A Brief History of MEMS: 1. Feynmanns Vision Richard Feynmann, Caltech (Nobel Prize, Physics, 1965) American Physical Society Meeting, December 29, 1959: What I want to talk about is the problem of manipulating and controlling things on a small scale. . In the year 2000, when they look back at this age, they will wonder why it was not until the year 1960 that anybody began seriously to move in this direction. And I want to offer another prize -- $1,000 to the first guy who makes an operating electric motor---a rotating electric motor which can be controlled from the outside and, not counting the leadin wires, is only 1/64 inch cube. he had to pay the electric motor prize only a year later http://www.zyvex.com/nanotech/feynman.html EE C245 ME C218 Fall 2003 Lecture 1

17 2. Planar IC Technology 1958 Robert Noyce Fairchild and Jack Kilby (Nobel Prize, Physics, 2000) -Texas Instruments invent the integrated circuit By the early 1960s, it was generally recognized that this was the way to make electronics small and cheaper Harvey Nathanson and William Newell, surface-micromachined resonant gate transistor, Westinghouse, 1965 Did Harvey hear about Richard Feynmans talk in 1959? I dont think so

EE C245 ME C218 Fall 2003 Lecture 1 18 Why Didnt MEMS Take Off in 1965? Resonant gate transistor was a poor on-chip frequency reference metals have a high temperature sensitivity and dont have a sharp resonance (low-Q) specific application didnt fly In 1968, Robert Newcomb (Stanford, now Maryland) proposed and attempted to fabricate a surface micromachined electromagnetic motor after seeing the Westinghouse work Energy density scaling for this type of motor indicated performance degradation as dimensions were reduced Materials incompatibility with Stanfords Microelectronics Lab research focus on electronic devices became a major issue

EE C245 ME C218 Fall 2003 Lecture 1 19 Another Historical Current: Silicon Substrate (Bulk) Micromachining 1950s: silicon anisotropic etchants (e.g., KOH) discovered at Bell Labs Late 1960s: Honeywell and Philips commercialize piezoresistive pressure sensor utilizing a silicon membrane formed by anisotropic etching 1960s-70s: research at Stanford on implanted silicon pressure sensors (Jim Meindl), neural probes, and a wafer-scale gas chromatograph (both Jim Angell) 1980s: Kurt Petersen of IBM and ex-Stanford students Henry Allen, Jim Knutti, Steve Terry help initiate Silicon Valley silicon microsensor and microstructures industry

1990s: silicon ink-jet print heads become a commodity EE C245 ME C218 Fall 2003 Lecture 1 20 When the Time is Right Early 1980s: Berkeley and Wisconsin demonstrate polysilicon structural layers and oxide sacrificial layers rebirth of surface micromachining 1984: integration of polysilicon microstructures with NMOS electronics 1987: Berkeley and Bell Labs demonstrate polysilicon surface micromechanisms; MEMS becomes the name in U.S.; Analog Devices begins accelerometer project 1988: Berkeley demonstrates electrostatic micromotor, stimulating major interest in Europe, Japan, and U.S.; Berkeley demonstrates the

electrostatic comb drive EE C245 ME C218 Fall 2003 Lecture 1 21 Polysilicon Microstructures UC Berkeley 1981-82 R. T. Howe and R. S. Muller, ECS Spring Mtg., May 1982 EE C245 ME C218 Fall 2003 Lecture 1 22 Polysilicon MEMS + NMOS Integration

UC Berkeley 1983-1984 Transresistance amplifier Capacitively driven and sensed 150 m-long polysilicon microbridge R. T. Howe and R. S. Muller, IEEE IEDM, San Francisco, December 1984 EE C245 ME C218 Fall 2003 Lecture 1 23

Polysilicon Electrostatic Micromotor Self-aligned pin-joint, made possible by conformal deposition of structural and sacrificial layers Prof. Mehran Mehregany, Case Western Reserve Univ. EE C245 ME C218 Fall 2003 Lecture 1 24 Electrostatic Comb-Drive Resonators W. C. Tang and R. T. Howe, BSAC 1987-1988 New idea: structures move laterally to surface C. Nguyen and R. T. Howe,

IEEE IEDM, Washington, D.C., December 1993 EE C245 ME C218 Fall 2003 Lecture 1 25 Analog Devices Accelerometers Integration with BiMOS linear technology Lateral structures with interdigitated parallel-plate sense/feedback capacitors ADXL-05 (1995) Courtesy of Kevin Chau, Micromachined Products Division, Cambridge

EE C245 ME C218 Fall 2003 Lecture 1 26 Surface Micromachining Foundries 1. MCNC MUMPS technology (imported from Berkeley) 19922. Sandia SUMMiT-IV and -V technologies: 1998 4 and 5 poly-Si level processes result: more universities, companies do MEMS M. S. Rodgers and J. Sniegowski, Transducers 99 (Sandia Natl. Labs) EE C245 ME C218 Fall 2003 Lecture 1 27 Self-Assembly Processes

Alien Technologies, Gilroy, Calif. chemically micromachined nanoblock silicon CMOS chiplets fall into minimum energy sites on substrate nanoblocks being fluidically self-assembed into embossed micro-pockets in plastic antenna substrate Prof. J. Stephen Smith, UC Berkeley EECS Dept. EE C245 ME C218 Fall 2003 Lecture 1 28 More Recent History Mechanical engineers move into MEMS, starting with Al Pisano in 1987 expand applications and

technology beyond EEs chip-centric view DARPA supports large projects at many US universities and labs (1994 200?) with a series of outstanding program managers (K. Gabriel, A. P. Pisano, W. C. Tang, C. T.-C. Nguyen, J. Evans) Commercialization of inertial sensors (Analog Devices and Motorola polysilicon accelerometers 1991 ) 108 by each company by 2002 Microfluidics starts with capillary electrophoresis circa 1990; micro-total analysis system (-TAS) vision for diagnosis, sensing, and synthesis Optical MEMS boom and bust: 1998 2002. EE C245 ME C218 Fall 2003 Lecture 1 29 MEMS and Nanotechnology I Richard Feynmanns 1959 talk:

But it is interesting that it would be, in principle, possible (I think) for a physicist to synthesize any chemical substance that the chemist writes down. Give the orders and the physicist synthesizes it. How? Put the atoms down where the chemist says, and so you make the substance. Eric Drexler, 1980s: visionary promoting a molecular engineering technology based on assemblers had paper at first MEMS workshop in 1987 Early 1990s: U.S. MEMS community concerned that far-out nanotech would be confused with our field, undermining credibility with industry and government EE C245 ME C218 Fall 2003 Lecture 1 30 MEMS and Nanotechnology II

Buckyballs, carbon nanotubes, nanowires, quantum dots, molecular motors, together with the atomicforce microscope (AFM) as an experimental tool Synthetic and top-down nanotechnology earns respect of MEMS community Why is nanotechnology interesting? Molecular control of sensing interface (chemical detection) Synthetic processes promise to create new batch-fabrication technologies Planar lithography is reaching into the nano regime (state-ofthe are is 50 nm line/space; spacer lithography has reached 7 nm) New computational devices: neural, quantum computing EE C245 ME C218 Fall 2003 Lecture 1 31 1 GHz NEMS Resonator SOI

Drive electrode Si double-ended tuning fork tine width = 35nm length = 500 nm thickness = 50 nm resonator SOI Sense electrode Interconnect parasitic elements are critical need nearby electronics Uses vertical channel FINFET

process on SOI substrate L. Chang, S. Bhave, T.-J. King, and R. T. Howe UC Berkeley (unpublished) EE C245 ME C218 Fall 2003 Lecture 1 32 MEMS (NEMS?) Memory: IBMs Millipede Array of AFM tips write and read bits: potential for low and adaptive power EE C245 ME C218 Fall 2003 Lecture 1 33 Electrostatic NEMS Motor

Alex Zettl, UC Berkeley, Physics Dept., July 2003 multi-walled carbon nanotube rotary sleeve bearing 500 nm EE C245 ME C218 Fall 2003 Lecture 1 34 Nanogap DNA Junctions Development of ultrafast and ultrasensitive dielectric DNA detection Applications to functional genomics or proteomics chips, as well as an exploration of nanogap DNA junction-based information storage and retrieval devices

Nanogap Junction arrays Inlet Nanogap Electrodes Electrodes Nanogap Junction Poly Si (I) Poly Si (II) Nanofluidic Network for DNA Trapping

Outlet EE C245 ME C218 Fall 2003 Lecture 1 DNA Nanogap (5 to 50 nm) Insulator Si3N4 Luke P. Lee and Dorian Liepmann, BioEng. Jeff Bokor, EECS 36 Opportunities in Blurring

the MEMS/NEMS Boundary Aggressive exploitation of extensions of top-down planar lithographic processes Synthetic techniques create new materials and structures (nanowires, CNT bearings) Self-assembly concepts will play a large role in combining the top-down and bottom-up technologies Application: mainstream information technology with power consumption being the driver Beyond CMOS really, extensions to CMOS > 2015 Non-volatile memories Communications EE C245 ME C218 Fall 2003 Lecture 1 38

Recently Viewed Presentations

  • Interprofessional Asthma Education: Development of a ...

    Interprofessional Asthma Education: Development of a ...

    Direct Patient Care and Physician Modeling with pulmonary attending at After Hospital Asthma and Life Threatening Asthma Clinics. Pre-assessment of asthma knowledge and Meter Dose Inhaler (MDI) skills. Day 4. Participate with asthma educator. Day 5. Post-assessment of asthma knowledge...
  • Strategy 4: IDEA Discharge Planning (Tool 4)

    Strategy 4: IDEA Discharge Planning (Tool 4)

    What is patientand family engagement? Strategy 4: IDEAL Discharge Planning (Tool 4) To set the stage for our conversation, I'd like to talk about the importance of patients and families as partners in ensuring and improving the quality and safety...
  • Measures of Central Tendency - FACULTY

    Measures of Central Tendency - FACULTY

    Median: The Median of X is the value of X such that an equal number are above and below X. Midpoint: Value of X that is half-way between the smallest and largest value. Mean: The Arithmetic Average (Sum of X,...
  • Inductance Self-Inductance Consider a solenoid L, connect it

    Inductance Self-Inductance Consider a solenoid L, connect it

    RLC Circuits Resistor (R), Inductor (L), and Capacitor (C) Let the battery charge up the capacitor Now flip the switch Current flows from capacitor through inductor Kirchoff's Loop law gives: Extra equation for capacitors: + - E C L Q...
  • 5-Minute Check on Activity 1-1 Problem Solving Techniques:

    5-Minute Check on Activity 1-1 Problem Solving Techniques:

    Activity 1 - 2 The Handshake Objectives Organize information Develop problem-solving strategies Draw a picture Recognize a pattern Do a simpler problem Communicate problem-solving ides Vocabulary Arithmetic sequence - a list of numbers in which consecutive numbers share a common...
  • Presentación de PowerPoint

    Presentación de PowerPoint

    Grup de treball SupTIC 16 d'Octubre de 2006 Cap a Un nou model de formació. Gestionats des de serveis centrals. Sessions tancades, preestablertes i deslligades entre si.
  • Basic Principles of Sociocultural Materialism

    Basic Principles of Sociocultural Materialism

    Cultural Materialism is a research strategy that guides us in what to look for in explaining human behavior. If a diligent researcher fails to reveal the causal impact of infrastructural factors, she then turns to the examination of structural conditions,...
  • fvcomm.files.wordpress.com


    Méthodes basées sur la communication Techniques de groupe : « prospection » Entretien individuels: « témoignages » - enquêteur + répondant - collecter jusqu'à obtenir de l'information redondante (saturation) Mesures d'efficacité des campagnes - Etudes qualitatives CMN5520 - Françoise Verschaeve...