Diapositive 1 - European Space Agency

Diapositive 1 - European Space Agency

A systematic procedure for the development of hardened technology: application to the I3T80-HR Karl Grang SODERN [email protected] Agenda Collaboration Initial specifications Initial philosophy: why to harden? The proposed procedure step by step: Technology selection Hardening techniques Hardening against TID Hardening against latch-up Design kit development First application: the SPADA_RT ASIC Total dose evaluation Latch-up evaluation Analog SET evaluation Distribution of the I3T80-HR technology AMICSA2006 SODERN 02/24/20 EADS 2 Collaboration

This project is an ESA co-funded contract (TOS-EDP): VPC2 project, contract n18082/04/NL/CB All hardening tasks performed have been done with the support of the CEA (French atomic agency) of Bruyres-LeChtel (SEIM) AMICSA2006 SODERN 02/24/20 EADS 3 Initial specifications Specifications are issued from the VPC2 project: Develop a multi sensor acquisition board, able to be inserted in a SpaceWire/ RMAP platform The heart of this acquisition module is a high accuracy / medium speed ASIC called SPADA_RT (Signal Processing ASIC for Detector Array Radiation Tolerant). Issued from SPADA_RT specifications, hardening task objectives can be summarized as follow: Latch-up threshold: > 80Mev/mg.cm TID hardness: > 60Krad(Si) Life time: > 10-15 years Considering strong economic pressure, use only commercial CMOS technologies Hardening By Design (none extra cost allowed) European factory MPW / MLM facility for space user (low volume) AMICSA2006 SODERN 02/24/20

EADS 4 Initial philosophy Hardening By Design (HBD) seems the ideal approach when dealing with radiations for space use (moderate environment) Lower cost / higher flexibility compared to dedicated technology State of the art performances but in practice, comparison with dedicated technology costs is not evident: Time needed to design test vector (including software) Time and set-up costs for testing Time needed to exploit test results. Conclusion: the following approach has been chosen Sub-micron technology + moderate environment = HBD a priori, without test vector. To limit risks, all hardening technique used shall be quantified, even roughly. AMICSA2006 SODERN 02/24/20 EADS 5 Open point #1: why is it necessary to harden? Decision to harden has been taken following 3 criteria: High reliability with multi-mission specifications Latch-up free Degradation due to total dose Is it a real issue?

Typical dose level for : With a typical 0.35m technology GEO Vth [email protected](Si) 4mm of Al Is about ~20Krad(Si)/year, which induces a dose rate of 2Rad(Si)/h. Could modern processes be considered radiation tolerant? 1) Low oxide thickness AMICSA2006 SODERN 2) Low dose rate 02/24/20 EADS 6 Open point #2: why is it necessary to consider dose (1)? The radiation effect shall not be considered only from the TID point of view: Degradation is time dependent. Degradation is temperature dependent. Degradation is dose rate dependent. Transistor threshold voltage variation The transistor is less conductor: Timing failure Low Dose Rate TID High Dose Rate

The transistor is more conductor: Leakage failure Considering only TID at low dose rate will ignore the leakage current failure mode: Low dose rate naturally increases the reliability by about 5 for the same TID AMICSA2006 SODERN 02/24/20 EADS 7 Open point #2: why is it necessary to consider dose (2)? The conventional NMOS transistor is not hardened against leakage current failure mode: Failure appears in the bird beak zone, side of the transistor itself. The bird beak oxide thickness increases from the gate oxide thickness (7nm) up to field oxide thickness (~500nm): determination of its radiation hardness is very complex. Hardening By Design can address leakage current but not threshold voltage increasing. Gate oxide: none relevant degradation up to 100Krad(Si) Bird beak : Radiation hardness depend of its characteristics Field oxide: lack of isolation between 3-10Krad(Si) AMICSA2006 SODERN 02/24/20 EADS 8

Open point #2: why is it necessary to consider dose (3)? Conclusion (0.35m and lower technology considered): Test at low dose rate = only failure related to threshold voltage increasing addressed. Test at high dose rate = both leakage current failure (after radiation) and threshold voltage increasing failure (after annealing) are addressed. To address leakage current failure, it is necessary to harden. Thermal failure XILINX VIRTEX FPGA vs total dose (0.25m) Failure level Strongly FPGA code dependent !!! AMICSA2006 SODERN 02/24/20 EADS 9 Open point #2: why is it necessary to consider dose (4)? In space environment, some TID sources are issued from discrete events: Passage through the trapped particles belts and polar zones for LEO. Solar flares for GEO and extra planetary missions. It means that the dose rate can be transiently high. x10000 Measured solar protons flux (10MeV & 30MeV) between 1965 and 1985 (continuous line = Wolf law) AMICSA2006 SODERN The solar eruption that took place in August 1972 (> 30Mev)

02/24/20 EADS 10 Open point #2: why is it necessary to consider dose (5)? Practical example: The BEPI-COLOMBO mission Mercury: 0.35UA + very low magnetic field = GEO solar flare x 10. In GEO solar flare environment, the worst case for dose rate is an Anomalous Large (AL) protons solar flare: Computation with the software Space Radiations (v.5.0) of some protons solar flares: 1g/cm -> 4mm Al August 1972: 240rad(Si)/h behind 4mm of Al October 1989: 110rad(Si)/h behind 4mm of Al 5Krad(Si) / 1 day -> 200rad(Si)/h behind 4mm of Al It means that the need for the BEPI-COLOMBO mission considering only large solar protons flares behind 4mm of Al without margins is: 50Krad(Si) for 1 large protons flare with 2Krad(Si)/h of dose rate. 100Krad(Si) for 2 larges protons flares with 2Krad(Si)/h of dose rate AMICSA2006 SODERN 02/24/20 EADS

11 Open point #2: why is it necessary to consider dose (6)? Are large protons flares rare? In red: maximum solar cycle Table 2. Probability that <=n AL events will occur in t years at solar maximum Mission duration t (years) Number of events n AMICSA2006 SODERN 02/24/20 1 3 5 7 0 76.56 49.00 34.03 25.00 1 95.70 78.40 62.38

50.00 2 99.29 91.63 80.11 68.75 3 99.89 96.92 89.95 81.25 4 99.98 98.91 95.08 89.06 5 99.99 99.62 97.65 93.75

EADS 12 Open point #2: why is it necessary to consider dose (7) ? Thus, it is necessary to harden against TID because: Its bringing reliability margin. All failure modes are addressed. High level of total dose and dose rate tolerance is also minimizing shielding requirement (low mass / volume) and simplify ray tracing consideration. Low level of high dose rate tolerance need a refined mission analysis. Where is the frontier between high and low dose rate? Technology dependent (oxide thickness, quality) Complex simulations needed Only some certitudes: 10Krad(Si)/h -> high dose rate 100Rad(Si)/h -> low dose rate AMICSA2006 SODERN 02/24/20 EADS 13 Open point #2: why is it necessary to consider dose (8) ? How to apply standards? Low dose rate windows: Earth missions Worst case for bipolar transistors ECSS 22900: 36-360rad(Si)/h MIL.STD.883F method 1019.6: < 0.1rad(Si)/s High dose rate

Extra-planetary mission Worst case for MOS transistors: ECSS 22900: 3-30Krad(Si)/h MIL.STD.883F method 1019.6: 50-300rad(Si)/s AMICSA2006 SODERN 02/24/20 EADS 14 Hardening procedure: general guidelines Used approach Use a systematic approach: Prevent any marginal cases Reaction against technology disappearance None local optimization, taking into account biasing current, function Use all known hardening measures, with a light approach: None test vector None new techniques Risk management about the light approach Limit the temperature range (latch-up). None memory point (SEU). None bipolar structure. Choice of the technology is part of the hardening procedure Light environmental specifications (60KRad / 80MeV/mg.cm) AMICSA2006 SODERN

02/24/20 EADS 15 Technology selection criterion (1) Economic consideration Exclusive supplier of a big customer Market (HV, OPTO, OTP options) Second source, introduction year Distribution (MPW ? Number of run per year ?) Electrical performances Simulate some representative cases Identify and quantify critical parameters (channel length, current density) Specific needs (analog capacitors) Intrinsic radiation level estimation Intrinsic total dose level estimation: Gate oxide thickness, voltage threshold, kind of isolation... Intrinsic latch-up level estimation EPI characteristic, isolation, Twin Tub, temperature range, diffusion depth, retrograde wells Technological characteristics allowing usual efficient countermeasures: Buried layer, Shottky module, number of metal tracks AMICSA2006 SODERN 02/24/20 EADS

16 Technology selection criterion (2) Subjective approach shall be avoided (the smallest, the fashion technology) Ex: XFAB 1m certainly the best choice for latch-up, life time and reliability but incompatible with the electrical need. Point attribution procedure concerning 21 criterion in the previous 3 categories has been established: Elimination: Negative point: on Null: Positive point: incompatibility with the application. hypothesis done in the initial analysis were optimistic this point. conform to the initial analysis Real advantage compared to the initial analysis. for each criteria, an ideal response shall be prepared. AMICSA2006 SODERN 02/24/20 EADS 17 Technology selection criterion (3) Economic section Introduction year Specific market identified (exclusive supplier) Specific devices (HV, OTP, EEPROM) Second source identified

Product costs section MPW program Independent MPW agency Nb of MPW run per year Price (10mm) CAD tools Electrical performances section Power supply capability Capacitor quality (voltage dependence) Minimum feature length Maximum MOS threshold voltage Radiation section Gate oxide thickness Devices isolation Number of metal layers Burried layer EPI layer Retrograde wells Specific customer section Founder nationality Foundry location Issued from economic analysis on life time Issued from economic analysis of project costs. Issued from initial analysis + simulations Extensive bibliography of well known hardening techniques Customer request Red = parameters with elimination condition AMICSA2006 SODERN 02/24/20

EADS 18 Technology selection criterion (4) This systematic procedure help to formalize the need. All proposed parameters are accessible with a simple NDA. The selected technology is the I3T80 CMOS 0.35m from AMIS (ex ALCATEL). The I3T80 is a hetero epitaxy process, which allow HV devices thanks to electrically isolated pocket This kind of process is growing due to SoC applications. NEPI NEPI Deep P-plugs allow electrical isolation N-epitaxy P-substrate (80V) of adjacent N-EPI pockets AMICSA2006 SODERN 02/24/20 EADS 19 Hardening technique: TID (1) The following failure modes are addressed: Device to device leakage current (NMOS):

LOCOS n+ n+ n+ n+ LOCOS Leakage current PWELL Intra device leakage current (NMOS) AMICSA2006 SODERN 02/24/20 EADS 20 Hardening technique: TID (2) NMOS device to device leakage current is easily cancelled via systematic guard rings p+ n+ n+ p+ p+

n+ n+ p+ None parasitic path PWELL NEPI AMICSA2006 SODERN 02/24/20 EADS 21 Hardening technique: TID (3) For the intra device leakage current, a modified NMOS geometry is needed: Classical circular geometry is not adopted because accurate electrical model can not be obtained without tests. The geometry chosen is electrically 80% compatible with the classical geometry and its hardening level is compliant with 100Krad(Si). AMICSA2006 SODERN 02/24/20 EADS 22

Hardening technique: TID (4) Geometry T1 & T2 Tm POLY extension Tox C1 Main transistor (finger type) Leakage path Tox = C2, C3 and C4 regions. Electrical model Thanks to its great similitude with the classical geometry, an high accuracy is obtained on the electrical modeling a priori. Field oxide. P+ active area (bulk strap) N+ active area (drain source diffusion) POLY: o POLY on active = thin oxide o POLY on field oxide = thick oxide. AMICSA2006 SODERN The leakage path still to exist but connect two diffusion at the same potential : o None electrical effect.

02/24/20 EADS 23 Hardening technique: Latch-up (1) As baseline, the proposed technology increases the latch-up hardening by a factor 6 if NMOS and PMOS transistors are manufactured in separated pockets. PMOS pocket VDD P+ diffusion RNWELL T1 NWELL/NEPI RNEPI PWELL (sinker part) T2 I(heavy ion) RPWELL NEPI T3 PWELL T4 Parasitic SCR circuit RPWELL N+

NMOS pocket AMICSA2006 SODERN 02/24/20 EADS Isolation wall 24 Hardening technique: Latch-up (2) In addition to the previous rule (NMOS & PMOS shall be manufactured in separated EPI pocket), others hardening rules are added (see initial philosophy): Systematic guard ring around PMOS and NMOS PMOS and NMOS above buried layer Limit the transistor size Limit the wells (buried layer) size Purpose of size limiting rules is to prevent: S/D junction turn ON for transistor sizing limitation Wells junction turn ON for NWELL or PWELL sizing limitation In case of ion strike. Sizing limitation is computed with analytical models. AMICSA2006 SODERN 02/24/20

EADS 25 Hardening technique: Latch-up (3) Cross-section with hardening rules: NMOS NMOS NMOS NMOS and and and and PMOS PMOS PMOS PMOS in separated N-EPI pocket wells above buried layer have maximum dimension wells have maximum dimension NEPI NMOS PMOS NPLUG P PWELL +

NWE LL PSINKER BLP PWELL P + NWE LL BLN P + NWE LL NWELL BLN PSUB AMICSA2006 SODERN 02/24/20 EADS 26 Hardening technique: Latch-up (4) Sub-model 1: Layer isolated by junction is used to fix the maximum transistor size. Sub-model 2: layer above a low impedance buried layer with the same polarity (N or P) used to fix the maximum wells dimension: 2.R1max

S/D diffusion POLY gate Guard ring Charges (ion) Sub-model1: Transistor size Buried layer NPLUG NEPI 2.R2max Wells (N or P) Sub-model1: Wells size AMICSA2006 SODERN 02/24/20 EADS 27 Practical implementation of hardening rules Practically and to prevent weak points, a new design kit has been coded with all hardening rules (ESD pads included) Compared to the original one, the following modifications have been done: Unused elements removed (front and back end)

MOS electrical models modified MOS geometries modified DRC rules modified (latch-up rules + detection of removed elements) Extraction rules modified (mainly for NMOS extraction) Basic library modified (ESD pads) Digital gates redesigned 17 months have been necessary for: Technology selection Hardening rules Design kit coding SPADA_RT chip design and test AMICSA2006 SODERN 02/24/20 EADS 28 First application: the SPADA_RT The proposed flow have been validated with the development of an mixed ASIC. SPADA_RT = Signal Processing ASIC for Detector Array _ Radiation Tolerant. Multi sensor chip: CCD, APS, HgCdTe Include all necessary circuitry for sensor / house keeping conditioning (ADC excluded) Both electrical and environmental specifications have been met at the first run. AMICSA2006 SODERN

02/24/20 Input dynamic 4Vpp Output dynamic 4Vpp Functionality CLAMP CDS or single sampling. Offset injection Output analog three state ENOB (with a theoretical ADC) 12 (gain independent) Pixel frequency 100KHz / 3MHz HK chains 4 (multiplexed) Number of clocks 2 Power supply 3.3V Power consumption 30mW (typical)

Temperature range -20C / +80C EADS 29 SPADA_RT TID results (1) TID evaluation of the SPADA_RT has been done at PAGURE (France) facility. Method used is the ESCC.22900 method: Standard windows 10Krad(Si)/h 5 steps: 0Krad(Si), 30Krad(Si), 60Krad(Si), 120Krad(Si) and annealing. 5 dies None functional or specification failure has been measured. AMICSA2006 SODERN 02/24/20 EADS 30 SPADA_RT TID results (2) TID power current drift TID offset drift 1.004 1.01 1

0.99 0.998 OFFSET SPADA1 OFFSET SPADA2 0.98 OFFSET SPADA3 0.97 OFFSET SPADA4 OFFSET SPADA8 0.96 Drift (arbitrary unit) Drift (arbitrary unit) 1.002 1 CURRENT SPADA1 0.996 CURRENT SPADA2 0.994 CURRENT SPADA3 0.992 CURRENT SPADA4 0.99

CURRENT SPADA8 0.988 0.986 0.95 0.984 0.94 0.982 0 30 60 120 Burn in 0 30 TID (KRad(Si)) TID NOISE drift 120 TID INL drift 1.6 1.02 1.4

NOISE SPADA1 0.98 NOISE SPADA2 0.96 NOISE SPADA3 NOISE SPADA4 0.94 NOISE SPADA8 0.92 D rift (arbitrary unit) 1.04 1 Drift (arbitrary unit) 60 TID (KRad(Si)) 1.2 INL SPADA1 1 INL SPADA2 0.8 INL SPADA3 INL SPADA4 0.6

INL SPADA8 0.4 0.9 0.2 0.88 0 0 30 60 120 Burn in 0 TID (KRad(Si)) AMICSA2006 SODERN 30 60 120 Burn in TID (KRad(Si)) 02/24/20

EADS 31 SPADA_RT latch-up results Test set-up: Specie C Ne Ar Ni Kr Kr Power supplies: Number of DUT: Temperature: Die pixel frequency: Location: Heavy ions cocktail: Angle 0 0 0 0 0 60 +3.3V +/-2% 5 +25C +/- 2C 120KHz LOUVAIN (CYCLONE) See the next table.

Flux (p/(cm.s)) 1E7 1E7 1E7 1E7 1E7 1E7 LET (Si) 1.2 Mev/mg.cm 3.3 Mev/mg.cm 10.1 Mev/mg.cm 21.9 Mev/mg.cm 32.4 Mev/mg.cm 64.8 Mev/mg.cm Penetration (m) 266 199 120 85 92 46 None latch-up detected. AMICSA2006 SODERN 02/24/20 EADS 32 SPADA_RT analog SET results A complete characterization of analog Single Effect Transient (Analog SET) have been done: Event = upset of +/-25mV around the steady state value (better accuracy is not possible due to the noisy environment)

SPADA_RT cross-section 1.00E-05 1.00E-06 event.cm Orbit : SPOT5 800 km Image shoot: 15 mn Quiet period 6.36E-07 upset/device/15' Solar Flare period 1.21E-04 upset/device/15' 1.00E-07 1.00E-08 0 10 20 30 40 50 60 70 LET (Mev/mg.cm) AMICSA2006 SODERN 02/24/20

EADS 33 I3T80-HR distribution (1) In accordance with ESA, this technology is now available for all potential ESA users: MPW facilities always accessible SODERN / EUROPRACTICE kit distribution (under analysis) The nominal kit is available under HyperSilicon software suite (TANNER) Low cost New verification suite include is compatible with CALIBRE Digital & analog library accessible (including the SPADA_RT) In addition of this nominal kit, an innovative distribution flow called Netlist-to-layout is also accessible: From our library, the user develops the front end, SODERN make the back end, up to the tape out, User do not need any specific software or competences: he simply uses a low cost simulator (PSPICE, HSPICE). Similar digital flow in 2007. AMICSA2006 SODERN 02/24/20 EADS 34 I3T80-HR distribution (2) CUSTOMER SODERN Netlist to layout design kit Front end develomement

(schematic) Floor plan: Power supplies Package Critical nets Netlist (*) Floor plan specification Feedback to correct parasitic elements effects Layout Extraction Extracted netlist (included parasitic elements) Final netlist Validation simulations Manufacturing order Tape out (GDSII) Manufacturing Packaging Foundry DRC checking Naked and packaged dies PVM (wafer lot measurement) (*) Netlist can be issued from schematic (analog) or digital synthesis (limited to 50K gates)

AMICSA2006 SODERN 02/24/20 EADS 35 End Thank you for your attention. Karl Grang SODERN [email protected] AMICSA2006 SODERN 02/24/20 EADS 36

Recently Viewed Presentations

  • Avoiding Plagiarism - Ohio U Business

    Avoiding Plagiarism - Ohio U Business

    In these instances, participants are able to see the visible manifestation of the group, the physical gathering, yet their ability to make direct, intimate connections with those around this is limited by the sheer magnitude of the assembly. (Purcell, 1997,...
  • STAT 101 - CAUSEweb

    STAT 101 - CAUSEweb

    Penn State, Univ. Park. 9551942. Mobile Psychology Lab for Mercy College's Bronx Majors in Psychology, Sociology, and Behavioral Science ... Development of an Intranet to Enhance the Instruction of Research Methodology in Psychology. John Govern. September 1, 1997. ILI. $16,530...
  • Beowulf Graphic Novel - PBworks

    Beowulf Graphic Novel - PBworks

    Mourning Beowulf. The Geats build a tower for Beowulf. "Then the Geats built the tower, as Beowulf had asked." (lines 871-872) They do this out of respect. His ashes were stored away. "Sealed his ashes in walls as straight and...
  • title.open ( ); revolution {execute};

    title.open ( ); revolution {execute};

    GridPP Collaboration Meeting 5 Nov 2001 Tony Doyle
  • Population Ecology G. Tyler Millers Living in the

    Population Ecology G. Tyler Millers Living in the

    Key Concepts Population Dynamics and Carrying Capacity Population Dispersion Factors Affecting Population Size Exponential and Logistic Growth Population Density Effects Natural Population Curves The Role of Predation in Controlling Population Size Reproductive Patterns and Survival Survivorship Curves Human Impacts on...
  • Proposition 1.1 De Moargan&#x27;s Laws

    Proposition 1.1 De Moargan's Laws

    Example: Hypothesis (cont) Translate each of the following research questions into appropriate hypothesis. 3. The drying time of paint under a specified test conditions is known to be normally distributed with mean value 75 min and standard deviation 9 min....
  • GPS III ASP Pre-Brief - NAVCEN

    GPS III ASP Pre-Brief - NAVCEN

    Outline Launch recommendations Empirical Clock Data Constellation Health Assessment Nav Coverage NAVCEN and Interference Reporting Procedures Constellation Performance and Summary IIR-(M) Launch Considerations So far, launch recommendations: C4 (SVN 53), A2 (next launch, SVN 58) Can re-phase to desired location...
  • Growth Regulators - Georgia Organics

    Growth Regulators - Georgia Organics

    Growth Regulators Original by Libby Astrachan ... Gibberellins (jib ber ill ins) Cytokinins (site oh kine ins) Ethylene (eth el een) Abscisic acid (ab sis ick) Hormones may act individually or together Auxins Stem elongation Produced in tips of stems...