Constructing procedural features - Siemens

Constructing procedural features - Siemens

Solid Edge ST5 Training Sheet Metal 2012. Siemens Product Lifecycle Management Software Inc. All rights reserved Siemens PLM Software Sheet Metal Course overview The Solid Edge Sheet Metal application is specialized for modeling straight brake sheet metal parts. Once you complete the activities in this course, you will be able to: Set parameters for sheet metal, such as bend radius and material thickness.

Place and manipulate flanges and bends. Specify sheet metal treatments and corner parameters. Place holes, cutouts, dimples, louvers, beads, gussets. Modify geometry using live rules for synchronous design. Prepare the sheet metal geometry for downstream manufacturing processes such as creating a flat pattern. 2012. Siemens Product Lifecycle Management Software Inc. All rights reserved Page 2 Siemens PLM Software Sheet Metal Overview Sheet metal overview

Sheet metal design is governed by the premise that the raw material used to form a sheet metal part is of common stock and of uniform thickness. The sheet metal part is designed in the formed state, but in the manufacturing process, many of the features of the part will be applied to the part before bending. The final locations of these features on the formed part is dependant on how the material behaves during the bending process 2012. Siemens Product Lifecycle Management Software Inc. All rights reserved Page 3 Siemens PLM Software Sheet Metal Overview Sheet metal overview (continued)

Material may stretch as the elastic limit is exceeded during bending and, while this stretching may be negligible in the final positioning of the feature, it may also make the target position after bending be incorrectly located. The stretching of material during bending varies based on the material used and the thickness of the material. To correctly accommodate the stretching of material, calculations are made using a standard bend formula, which is provided. This bend formula can be customized for each stock material and by doing so, better accuracy is achieved in the resulting parts. 2012. Siemens Product Lifecycle Management Software Inc. All rights reserved Page 4 Siemens PLM Software

Terminology Sheet metal features 1. Plate: Consists of a layer face and a thickness face. 2. Tab-Flange: Two plates connected by a bend. 3. Bend: Connects two tab-flanges. 4. Bend Relief: Option to prevent tearing during bending. 5. Cutouts: Openings in the part. 6. Corner: Where 2 or 3 bends meet. 7. Procedural Feature: Deformation features such as dimples, drawn cutouts, louvers, beads, gussets, and so forth. 2012. Siemens Product Lifecycle Management Software Inc. All rights reserved

Page 5 Siemens PLM Software Steering wheel behavior in sheet metal When you select a thickness face, Solid Edge displays a steering wheel unique to the sheet metal application. You can create flanges by selecting the flange start handle. You can use the primary axis, parallel to the layer face, to manipulate the size of the plate. 1.Primary Axis: Used to move or rotate the thickness face. 2.Origin 3.Flange start handle: This opens flange creation options on Quickbar. When you move the steering wheel origin, all of the steering wheel

capabilities become accessible 2012. Siemens Product Lifecycle Management Software Inc. All rights reserved Page 6 Siemens PLM Software Material Table and gage Material Table Defines the material and mechanical properties for a part. When you select a material from the list, material and mechanical properties for the material such as face style, fill style, density, coefficient of thermal expansion, and so forth are assigned. When working with a sheet metal part, you also use the material table to define the properties for the sheet metal stock you are using, such as material thickness, bend radius, and so forth

Sheet Metal Gage Displays the name of the current gage. When you select a name from the list, a set of associated material and mechanical properties is displayed. You can use the tabs on the dialog box to review or modify the properties. You can also define the material thickness using the Material Thickness option on the Gage tab. 2012. Siemens Product Lifecycle Management Software Inc. All rights reserved Page 7 Siemens PLM Software Activity Activity: Starting sheet metal design

2012. Siemens Product Lifecycle Management Software Inc. All rights reserved Page 8 Siemens PLM Software Base Features Base features in sheet metal A base feature in sheet metal is the first thickness plate placed in a sheet metal file. You can create the base feature by placing a tab, which is a single thickness plate, or a contour flange, which can consist of additional flanges and bends. 2012. Siemens Product Lifecycle Management Software Inc. All rights reserved

Page 9 Siemens PLM Software Construct the base feature You can construct a base feature with the Tab and Contour Flange commands. The Tab command constructs a flat feature of any shape using a closed profile. The Contour Flange command constructs a feature comprised of one or more bends and flats using an open profile. If you want to use a different bend radius value, you can do this by drawing arcs in the profiles. 2012. Siemens Product Lifecycle Management Software Inc. All rights reserved

Page 10 Siemens PLM Software Tab Command: Synchronous environment Constructs a tab feature on a sheet metal part. You can use this command to construct a base feature or add a feature to an existing sheet metal part. In the synchronous environment, you can construct a tab with a single sketch region, or with multiple sketch regions.

2012. Siemens Product Lifecycle Management Software Inc. All rights reserved Page 11 Siemens PLM Software Tab Command: Ordered environment In the ordered environment, you can only have one profile per tab feature. When selecting multiple regions, the regions must be contiguous and in the same plane. When constructing a base feature in the ordered environment, the profile must be closed, and you must also define the material direction and material thickness you want.

For subsequent features in the ordered environment, the profile can be open or closed. When using an open profile, you must define the side of the profile to which you want to add material. 2012. Siemens Product Lifecycle Management Software Inc. All rights reserved Page 12 Siemens PLM Software Cut Command Cuts through a defined portion of the part. You can create a sheet metal cutout with an open profile

2012. Siemens Product Lifecycle Management Software Inc. All rights reserved Page 13 Siemens PLM Software Cut Command Face Normal cut types Thickness cut: This option creates a cutout that compensates for the material thickness of the part. The Thickness cut option is useful when creating parts in which a shaft must pass through aligned circular cutouts.

2012. Siemens Product Lifecycle Management Software Inc. All rights reserved Page 14 Siemens PLM Software Cut Command Face Normal cut types Midplane cut: This option creates a cutout based on the mid-plane of the part. This option creates a cutout based on the mid-plane of the part. 2012. Siemens Product Lifecycle Management Software Inc. All rights reserved

Page 15 Siemens PLM Software Cut Command Face Normal cut types Nearest Face cut: This option creates a cutout based on the nearest face of the part. 2012. Siemens Product Lifecycle Management Software Inc. All rights reserved Page 16 Siemens PLM Software

Cut Command Cuts across bends The Wrapped Cut option unfolds the bend to create a cut, and then rebends when the cut is complete. 2012. Siemens Product Lifecycle Management Software Inc. All rights reserved Page 17 Siemens PLM Software Activity: Using regions to create tabs and cuts Activity: Using regions to create tabs and cuts

2012. Siemens Product Lifecycle Management Software Inc. All rights reserved Page 18 Siemens PLM Software Flanges, corners and bend relief You create flanges using flange handles (synchronous environment). As you create them, you can control end conditions such as bend relief and corner conditions. You can insert bends across layer faces. 2012. Siemens Product Lifecycle Management Software Inc. All rights reserved Page 19

Siemens PLM Software Flanges Synchronous environment Flanges in the synchronous environment In the synchronous environment, you can construct a flange by selecting a linear thickness edge to display the flange start handle, clicking the flange start handle, specifying a flange distance, When you click, a 90 flange is drawn automatically. However, when specifying the

distance for the flange, you can also specify an angle. and clicking to place the flange. 2012. Siemens Product Lifecycle Management Software Inc. All rights reserved Page 20 Siemens PLM Software Flanges Ordered environment Flanges in the ordered environment In the ordered environment, you construct a flange by selecting a linear thickness edge, and then reposition the cursor to define the flange

direction and length. 2012. Siemens Product Lifecycle Management Software Inc. All rights reserved Page 21 Siemens PLM Software Corner Relief Specifies that you want to apply corner relief to flanges that are adjacent to the flange you are constructing. When you set this option, you can also specify how you want the corner relief applied. Bend Only Specifies that corner relief is only applied to the bend portion of the adjacent flanges.

Bend and Face Specifies that corner relief is applied to both the bend and face portions of the adjacent flanges. Bend and Face Chain Specifies corner relief is applied to the entire chain of bends and faces of adjacent flanges. 2012. Siemens Product Lifecycle Management Software Inc. All rights reserved Page 22 Siemens PLM Software

Bend Command Inserts a bend across a planar face. You can use the command to add a bend in the middle of a part. The bend profile must be a single linear element. You cannot insert a bend across an existing flange 2012. Siemens Product Lifecycle Management Software Inc. All rights reserved Page 23 Siemens PLM Software Bend Command (ordered environment) Insert a bend in the ordered environment Choose Home tabSheet Metal groupBends listBend.

Define the profile plane. Draw a profile. The profile, which must be a single linear element, represents the approximate location of the bend. Choose Home tabClose groupClose. Define the bend location with respect to the profile. Define which side of the part will move. Define the bend direction. Finish the feature. 2012. Siemens Product Lifecycle Management Software Inc. All rights reserved Page 24 Siemens PLM Software

Bend Command (Synchronous environment) 1. Choose Home tabSheet Metal groupBends listBend. 2. Select the sketch element to create the bend. 3. Click the side of the sketch to move. 4. (Optional) Click to the direction arrow to change the direction of the bend. 5. (Optional) Type a value to change the bend angle. 6. Click to create the bend. 2012. Siemens Product Lifecycle Management Software Inc. All rights reserved Page 25

Siemens PLM Software Close 2-Bend Corner command Closes the corner where two flanges meet and creates the smallest gap permissible without joining the corner. Flange edges can equally meet, overlap, totally intersect, or intersect with circular corner relief. You can specify whether you want to close (A) or overlap (B) the corners. 2012. Siemens Product Lifecycle Management Software Inc. All rights reserved Page 26 Siemens PLM Software

Activity: Flange and corner conditions Activity: Flange and corner conditions 2012. Siemens Product Lifecycle Management Software Inc. All rights reserved Page 27 Siemens PLM Software Hem Command Constructs a hem, where the material folds back You can use the Hem Options dialog box to specify the type of hem to be created. The Hem Type list contains several types of hems from which to

choose. For example, you can define s-flange (A), loop (B), and closed (C) hems. . 2012. Siemens Product Lifecycle Management Software Inc. All rights reserved Page 28 Siemens PLM Software Activity: Using the hem command in sheet metal design Activity: Using the hem command in sheet metal design 2012. Siemens Product Lifecycle Management Software Inc. All rights reserved

Page 29 Siemens PLM Software Live rules in sheet metal Live rules in sheet metal When you use the steering wheel to modify a portion of a model, Live Rules and relationships control how the rest of the model responds. 2012. Siemens Product Lifecycle Management Software Inc. All rights reserved Page 30 Siemens PLM Software

Live Rules: Thickness Chain Thickness chain on a sheet metal part A contiguous series of thickness faces (A) and bend end caps (B) in a sheet metal part. 2012. Siemens Product Lifecycle Management Software Inc. All rights reserved Page 31 Siemens PLM Software Live Rules: Thickness Chain Live Rules works the same in synchronous sheet metal modeling as it does in synchronous part modeling. An additional Live Rules option is available in the

synchronous sheet metal modeling environment. The option is called Maintain Thickness Chain. The Maintain Thickness Chain option maintains the position of a thickness chain, made up of thickness faces connected by bends, during a move operation. When the Thickness Chain option is set, if you move one thickness face, the other connected faces move also. 2012. Siemens Product Lifecycle Management Software Inc. All rights reserved Page 32 Siemens PLM Software Live Rules: Thickness Chain

Selecting the Suspend Live Rules option does not affect the setting of the Thickness Chain option. In other words, if the Thickness Chain option is set and you select the Suspend Live Rules option, the Thickness Chain options remains set. The Thickness Chain option ignores the Coplanar rule within the thickness chain so the thickness chain does not have to be coplanar to work. 2012. Siemens Product Lifecycle Management Software Inc. All rights reserved Page 33 Siemens PLM Software Live Rules: Thickness Chain

Relationships are not detected between members of the same thickness chain, but are detected between members of separate chains. So even though the Coplanar rule is not detected within one thickness chain, it is detected from one thickness chain to another. In the following example, Symmetry and Thickness Chain are disabled. When the selected face is moved, the faces in red move also because they are coplanar and are part of a separate thickness chain. Since Thickness Chain is disabled and the Coplanar rule is not detected within the thickness chain containing the face selected to move, the blue face does not move. 2012. Siemens Product Lifecycle Management Software Inc. All rights reserved Page 34 Siemens PLM Software

Activity: Using live rules in sheet metal Activity: Using live rules in sheet metal 2012. Siemens Product Lifecycle Management Software Inc. All rights reserved Page 35 Siemens PLM Software Sheet Metal: Jog Constructing a Jog in a sheet metal part A jog constructs an offset face with a connecting flange and maintains the positions of any features contained on the face, such as holes and

deformation features. 2012. Siemens Product Lifecycle Management Software Inc. All rights reserved Page 36 Siemens PLM Software Sheet Metal: Jog Constructs two bends to add a jog to a planar face of a sheet metal part. In the ordered environment, the profile for a jog feature must be a single linear element. In the synchronous environment, the sketch element used to construct the jog must be a single line that is coplanar with the face being bent. The jog can be minimal: for example, a slight offset or step to provide clearance or rigidity to a part.

2012. Siemens Product Lifecycle Management Software Inc. All rights reserved Page 37 Siemens PLM Software Sheet Metal: Editing the bend radius When you create a bend, the bend radius is defined from the default global parameters. Once a bend is created, it can be edited by selecting the bend, then selecting the bend radius handle, then typing a new value in the dynamic edit control,

and then clicking to finalize editing the radius. 2012. Siemens Product Lifecycle Management Software Inc. All rights reserved Page 38 Siemens PLM Software Activity: Using the jog and break corner command Activity: Using the jog and break corner command in sheet metal design 2012. Siemens Product Lifecycle Management Software Inc. All rights reserved Page 39

Siemens PLM Software Deformation Features Deformation features in a sheet metal part Deformation features model features on the thickness faces of sheet metal parts, such as louvers, beads, dimples, drawn cutouts, and gussets, that can be manufactured by striking the stock with a tool. The values you use to define deformation features as you create them are stored with the features, and you can edit them later. Also the feature origin, or strike point, of the feature is positioned on the face such that if the face is later rotated or a jog is added, the feature will remained positioned. The feature can be relocated by modifying the position of the feature origin. Deformation features consist of louvers, beads, dimples, drawn cutouts, and gussets.

2012. Siemens Product Lifecycle Management Software Inc. All rights reserved Page 40 Siemens PLM Software Deformation Features: Louvers Constructing louvers Like a jog feature, a louver feature is constructed using a single, linear element. When constructing a louver, the louver height (H) must be equal to or less than the louver depth (D) minus the material thickness (T). You can also specify whether you want the louver ends

formed (A) or lanced (B) using the Louver Options dialog box. Louver features cannot be flattened. 2012. Siemens Product Lifecycle Management Software Inc. All rights reserved Page 41 Siemens PLM Software Deformation Features: Dimples Constructs a sheet metal dimple from a selected region. If you use an open profile, the open ends of the profile must theoretically intersect part edges. Dimples are special die-formed features in which material deformation occurs. Dimples cannot be flattened.

2012. Siemens Product Lifecycle Management Software Inc. All rights reserved Page 42 Siemens PLM Software Deformation Features: Drawn Cutouts In the ordered environment, if you use an open profile, the open ends of the profile must theoretically intersect part edges. A closed profile cannot touch any part edges. Drawn cutouts cannot be flattened. In the synchronous environment, the geometry used to create the cutout can be a closed internal profile that creates a region or an open profile extended to a part edge to create a closed region.

2012. Siemens Product Lifecycle Management Software Inc. All rights reserved Page 43 Siemens PLM Software Deformation Features: Beads Constructs a bead feature on a sheet metal part. A bead feature is often used to stiffen a sheet metal part. In the ordered environment, you can construct a bead with an open or closed profile. 2012. Siemens Product Lifecycle Management Software Inc. All rights reserved

Page 44 Siemens PLM Software Deformation Features: Gussets Constructs a stiffening gusset across a bend to provide reinforcement in a sheet metal part. You can create a gusset automatically or from a user-drawn profile. You can use the Gusset Options dialog box to specify the method to use when constructing the gusset. The steps required to construct the gusset are different depending on the method you use. 2012. Siemens Product Lifecycle Management Software Inc. All rights reserved Page 45

Siemens PLM Software Deformation Features: Working with Feature Origins You can use the feature origin handle to move or rotate manufactured features that contain a feature origin. The feature origin provides a reference point that can be used to move a feature without changing its shape. The feature origin is used primarily in sheet metal models (.psm) for features such as dimples, drawn cutouts, and louvers. Note: A feature origin is also used for hole features in part and sheet metal documents. The feature origin for a hole feature does not have XY fins. You can dimension to a feature origin, and then edit the dimensional value to move the entire feature.

Note: When using Smart Dimension to dimension to a feature origin you cannot select the feature origin first. Show and Hide commands are available to display and hide the feature origin when you select a feature that contains a feature origin. You can also display and hide all the features origins in a document. Shortcut menu commands are available to reposition the feature origin for a feature. 2012. Siemens Product Lifecycle Management Software Inc. All rights reserved Page 46 Siemens PLM Software Activity: Working with

deformation features Activity: Working with deformation features in sheet metal. 2012. Siemens Product Lifecycle Management Software Inc. All rights reserved Page 47 Siemens PLM Software Manipulating sheet metal geometry Manipulating sheet metal geometry After constructing a sheet metal part, you may need to create a flat pattern of the part for manufacturing.

2012. Siemens Product Lifecycle Management Software Inc. All rights reserved Page 48 Siemens PLM Software Creating a flat pattern 1.Select Tools tabModel Pattern. 2.Select Tools tabFlat groupFlatten . 3.Click a face to be oriented upward in the flat. 4.Click an edge to define the X axis and origin. 5.Click to complete the flat pattern. 2012. Siemens Product Lifecycle Management Software Inc. All rights reserved

Page 49 Siemens PLM Software Activity: Creating a flat pattern Activity: Creating a flat pattern from a sheet metal part 2012. Siemens Product Lifecycle Management Software Inc. All rights reserved Page 50 Siemens PLM Software

Recently Viewed Presentations

  • The Terrestrial Planets, Part II

    The Terrestrial Planets, Part II

    The Terrestrial Planets, Part II The Earth EARTH Physical Data Diameter: 12,756.3 km Mass: 5.976x1027 g Density: 5.518 g/cm3 Rotation Period: 23.9 hours Tilt of Axis: 23.5o Surface Temperature: 200-300 K Physical Data Orbital Semi-Major Axis: 1.49x1011 m (1 AU)...
  • Week 5 August 28, 2017 Read any at

    Week 5 August 28, 2017 Read any at

    Issue # 1 Week 5 August 28, 2017 Read any at bedtime every day or read online books: storyline online, etc. Language Arts - Fiction & Non fiction, characters, setting, plot, Problem and solution, Parts of a book-glossary, table of...
  • Presentazione di PowerPoint - Altervista

    Presentazione di PowerPoint - Altervista

    progettaz i one valutaz i one o i s azione di insegnamento dimensione organizzativa dimensione metodologica dimensioni dell'azione didattica dimensione relazionale comunicazione educativa come relazione flessibile trascendere la complementarietÀ variare i setting relazionali puntare su una responsabilitÀ condivisa valorizzare l...
  • Allusions - chopinlit.weebly.com

    Allusions - chopinlit.weebly.com

    Part to whole - the second word (solider) is part of the first word (platoon) Varying degree - the first word (hot) is the extreme of the second word (scalding) Antonym Object to function - gills are used to breathe...
  • CIS 746 Software Measurement

    CIS 746 Software Measurement

    Industrial-Strength Management Strategies Norm Brown IEEE Software July 96 SPMN Http://spmn.com Software Management Framework Identify and correct defects and potential problems early Plan and estimate Minimize rework caused by uncontrolled change Make effective use of your people Nine Principal ...
  • Extending Advances in Neonatal Care to the Community Hospital ...

    Extending Advances in Neonatal Care to the Community Hospital ...

    EXTENDING ADVANCES IN NEONATAL CARE TO THE COMMUNITY HOSPITAL— IS IT EVEN POSSIBLE? CAROL L. WAGNER, M.D. PROFESSOR OF PEDIATRICS MUSC OBJECTIVES Discuss the potential role of telemedicine in neonatal resuscitation and acute care interventions to improve neonatal outcomes at...
  • E-Learning Policy - Weebly

    E-Learning Policy - Weebly

    Duval County Public Schools, DCPS, is the school district encompassing the Jacksonville, Florida area schools. The school district is large, consisting of 151 schools including elementary, middle, and high school levels (Duval County Public Schools, 2014).
  • The Urantia Book - Paper 96 -Yahweh - God of the Hebrews

    The Urantia Book - Paper 96 -Yahweh - God of the Hebrews

    Paper 96Yahweh - God of the Hebrews. AUDIO VERSION. 96:0.1 (1052.1) In conceiving of Deity, man first includes all gods, then subordinates all foreign gods to his tribal deity, and finally excludes all but the one God of final and...