Ch 10 Nuclear Chemistry - Henry County School District

Ch 10 Nuclear Chemistry - Henry County School District

Chapter 10 Nuclear Chemistry Standards Addressed in this Chapter SPS3. Students will distinguish the characteristics and components of radioactivity. Differentiate among alpha and beta particles and gamma radiation.

Differentiate between fission and fusion. Explain the process half-life as related to radioactive decay. Describe nuclear energy, its practical application as an alternative energy source, and its potential problems. SPS5. Students will compare and contrast the phases of matter as they relate to atomic and molecular motion. Compare and contrast the atomic/molecular motion of solids, liquids, gases and plasmas.

10.1 Radioactivity Radioactivity is the process in which an unstable atomic nucleus emits charged particles and energy. Radioisotope is short for radioactive isotopes, which is any atom containing an unstable nucleus. Radioisotopes spontaneously change into other isotopes over time and is said to undergo nuclear decay. During nuclear decay, atoms of one element can change into atoms of a different element altogether.

Types of Nuclear Radiation Nuclear radiation is charged particles and energy that are emitted from the nuclei of radioisotopes Common types of nuclear radiation include alpha particles, beta particles and gamma rays 1. Alpha Decay Alpha particle is a positively charged particle made up of two protons and two neutrons (the same as helium nucleus)

Alpha particles are the least penetrating type of nuclear radiation. They can be stopped by a sheet of paper of by clothing. The alpha particle has no electrons so it has a 2+ charge. 42He is the symbol for an alpha particle Alpha Decay Alpha decay is expressed as an equation 2. Beta Decay

Beta particle is an electron emitted by an unstable nucleus Beta particles are abbreviated or 0-1e Beta particles are more penetrating than alpha particles. Beta particles pass through paper but can be stopped by a thin sheet of metal. 2. Beta Decay The beta particle has no mass During beta decay a neutron

decomposes into a proton and an electron The proton stays trapped in the nucleus while the electron is released Beta Decay Beta decay is expressed as an equation 3. Gamma Decay Gamma ray is a penetrating ray of energy emitted by an unstable nucleus. The symbol for a gamma ray is

The gamma radiation has no mass and no charge During gamma decay the atomic number and mass number of the atom remain the same but the energy of the nucleus decreases Gamma Decay Gamma decay often accompanies alpha or beta decay. Gamma rays have the most energy of the

three, gamma rays can pass through paper and aluminum but is stopped by thick concrete or lead Gamma Decay Gamma decay Comparing Strength of Nuclear radiation Nuclear Ration Summary

Alpha Particles Beta Particles Gamma Ray Symbol 42He 2 protons & 2 neutrons Has a charge +2 and mass of 4 atm

Weakest Stopped by paper Symbol or 01e An electron Has no mass Stronger than Alpha Stopped by sheet of metal

Symbol Only energy No mass, No charge Strongest Stopped by thick lead or thick concrete Types of Radiation Gamma ()

high-energy photon 0 -1 e 1- 0 concrete

Beta-minus (-) electron He lead helium nucleus 4 2

2+ paper Alpha () 10.2 Rates of Nuclear Decay Half-life is the time required for one half of a sample of radioisotope to decay After one half-life, half of the atoms in a sample have decayed, while the other half remains unchanged.

Half-lives can vary from fractions of a second to billions of years Time in which of the original isotopes decay A. Half-Life First Half-life original isotopes remain decayed Second Half-life original isotopes remain decayed

Third Half-life 1/8 original isotopes remain 7/8 decayed Unlike chemical reaction rates, which vary with the conditions of a reaction, nuclear decay rates are constant. Half-Life progression of Iodine-131 100 gram sample with 8.1 day life 0 days 100 g 8.1 days

50 g remains First life 24.3 days 12.5 g remains Third life 32.4 days 6.25g remains Fourth life 16.2 days

25 g remains Second life 40.5 days 3.125 g remains Fifth life Etc. http://einstein.byu.edu/~masong/htmstuff/Radioactive2.html Half-life graph

life calculations Amount of sample divide by two for each life that passed Amount of time = (# of lives) X ( length of one life) A. Half-Life Practice 1. If we start with 800 atoms of a radioactive substance, 400 atoms how many would remain after one half-life?_________ atoms after two half-lives? 200 _________

atoms after three half-lives? 100 _______ 2. If we start with 48 g of a radioactive substance with a 2 hour life , 12 g how much is left after two half-lives? _____ after four half-lives?___ 3g how much time has passed for 4 lives? ______ 8 hours 3. If we start with 16 grams of a radioactive substance that

has a 6 day life, How much will remain after three half-lives?________ 2 grams How much time would have passed?_______ 18 days 4. How much of the sample has decayed after zero zero years?________ 5. If only 25% of the

carbon-14 remains, how old is the material containing the carbon-14? 10740 years old ___________ 6. If a sample originally had 150 grams of carbon-14, how many atoms will remain 12.5 grams after 16,110 years? _______ 10.4 Fission and Fusion

Strong nuclear force is the attractive force that binds protons and neutrons together in the nucleus. Over very short distances the strong nuclear force is much great than the electric forces among protons. 1. The effect of size on Nuclear Forces The greater the number of protons in a nucleus the greater is the electric force that repels those protons. In larger nuclei, the repulsive electric force is

stronger than in smaller nuclei Larger numbers of electric forces make larger nucleus less stable 2. Unstable Nuclei A nucleus becomes unstable (radioactive) when the strong nuclear force can no longer overcome the repulsive electric forces among protons. All nuclei with more than 83 protons are radioactive

Fission Fission is the splitting of an atomic nucleus into two smaller parts. In nuclear fission, tremendous amounts of energy can be produced from very small amounts of mass. Chain Reaction A chain reaction refers to a process in which neutrons released in fission produce an additional fission in at least

one further nucleus. This nucleus in turn produces neutrons, and the process repeats. The process may be controlled (nuclear power) or uncontrolled (nuclear weapons). Critical Mass The minimum amount of a substance that can sustain a

chain reaction. It takes very little Uranium-235 to reach critical mass. Fusion Fusion is a process in which the nuclei of two atoms combine to form a larger nucleus. During fusion a small fraction of the reactant mass is converted into energy. Inside the sun an estimated 600 millions tons

of hydrogen undergo fusion each second Fusion requires extremely high temperatures (10,000,000C). At these temperature matter can exist as plasma C. Fusion Plasma is a state of matter in which atoms have been stripped of their electrons. Fusion reactions produce much more energy per gram of fuel and produce less radioactive waste than fission. Two main problems in designing a fusion rector

1st they need to achieve high temperatures required to start the reaction It requires a heat of about 10 million degrees Celsius. Scientist have to find a way of producing and containing that much heat. 2nd they must contain the plasma Fusion can occur only in the plasma state of matter (super-heated gas). Fission Splitting a larger atom into smaller

atoms Releases two or three neutrons Releases large amounts of energy Used as a source for electricity Fusion Combining small atoms into a larger atom

Requires very high temperatures Releases large amounts of energy 3. Nuclear Energy from Fission Nuclear power plants generate about 20% of the electricity in the US Nuclear power plant do not emit air pollutants But workers are made to wear

protective clothing to recue their exposure to nuclear radiation. Nuclear power plants produce radioactive waste that must be isolated and stored so that it does not harm people or the environment. If the reactors cooling systems failed a meltdown might occur During a meltdown the core of the reactor melts and radioactive material may be released.

Nuclear Power Fission Reactors Nuclear Power Fusion Reactors (not yet sustainable) National Spherical Torus Experiment Tokamak Fusion Test Reactor Princeton University

Nuclear Power F I S S I O N 235U is limited danger of meltdown

toxic waste thermal pollution vs. F U

S I O N Hydrogen is abundant no danger of meltdown no toxic waste not yet sustainable Dangers Nuclear Decay nuclear waste

Nuclear radiation Benefits Medical Cancer Treatment Radioactive tracers Nuclear Power Other Uses of Radiation Irradiated Food (p.676) Radioactive Dating (p.683)

Nuclear Medicine (p.692-693) Page : 319 # 1-10 Question & Answer #11-20 only Answer Answer on Separate sheet of paper for grade

Recently Viewed Presentations

  • ESTP courses: "Evaluation'

    ESTP courses: "Evaluation'

    I didn't like that we had to use demetra+. The software is not available and the output is completely different from X12 and TSW. Secondly exercises were missing. Thirdly background information is missing, you have to print is at home....
  • Citrus Valley Health Partners Lean Cynthia Routt-Vargas Certified

    Citrus Valley Health Partners Lean Cynthia Routt-Vargas Certified

    Note: Worksheets in this manual can be found on the Intranet A:\Intranet\Lean Certification Forms. List who our customer is for chosen problem or "agitation". What is the Voice of the Customer? Your customer's needs and the perception of your service.
  • SciENcv : a brief introduction

    SciENcv : a brief introduction

    Integration of my NCBI Tools. Method A&B. Method C&D. Information from the fields in PubMed, PubMed Central and the NIH Manuscript Submission System are all part of NCBI and transferred to other NCBI fields.
  • MONASH LIBRARY Learning activity Scene simulation - Hospital

    MONASH LIBRARY Learning activity Scene simulation - Hospital

    It's OK to ask your nurse or doctor friend outside work about a patient's medical issues. It's OK to ask another nurse or doctor in the ward about a patient's medical issues. Patient confidentiality is veryimportant, ... Monash University ...
  • Workflow: Tecnología para la Implementación de la ...

    Workflow: Tecnología para la Implementación de la ...

    Workflow: Tecnología para la Implementación de la Reingeniería de Procesos de Negocios-Parte 2-Ms. Ing. Gabriel Vilallonga UNSL - Junio 2007
  • COMPUTER ORGANIZATION AND DESIGN 5 Edition th The

    COMPUTER ORGANIZATION AND DESIGN 5 Edition th The

    Chapter 2 Instructions: Language of the Computer
  • Etatism in the Turkish Economy - Dokuz Eylül University

    Etatism in the Turkish Economy - Dokuz Eylül University

    Yeni gümrük tarifesinin arkasına sığınarak dünya fiyatından birkaç misli yükseğe satan basit ve şımarık bir sanayi türemeye başlamıştı....İşte demir telleri keserek çivi yapan, çiviyi dış piyasa fiyatının on misline satan, milli sanayi olduğu için demir telleri de hammadde diye gümrüksüz...
  • Presentation Title

    Presentation Title

    Smoking Cessation Programs in Addiction Treatment Centers: An Organizational Analysis Hannah K. Knudsen, Ph.D. Lori J. Ducharme, Ph.D. Paul M. Roman, Ph.D.